organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 1H-1,2,3-triazole-4-carboxyl­ate

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 6 January 2009; accepted 8 January 2009; online 14 January 2009)

The title compound, C4H5N3O2, features an essentially planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.013 Å). The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds and ππ stacking inter­actions (centroid–centroid distance 3.882 Å).

Related literature

For general background, see: Abu-Orabi et al. (1989[Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461-1468.]); Fan & Katritzky (1996[Fan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1-126. Oxford: Pergamon.]); Dehne (1994[Dehne, H. (1994). Methoden der Organischen Chemie, Vol. E8d, edited by E. Schaumann, pp. 305-405. Stuttgart: Thieme.]). For a related structure, see: Wang et al. (1998[Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927-1929.]).

[Scheme 1]

Experimental

Crystal data
  • C4H5N3O2

  • Mr = 127.11

  • Monoclinic, P 21 /n

  • a = 3.8823 (7) Å

  • b = 17.499 (3) Å

  • c = 8.8171 (17) Å

  • β = 100.938 (3)°

  • V = 588.12 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 290 (2) K

  • 0.30 × 0.23 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.977

  • 4285 measured reflections

  • 1098 independent reflections

  • 917 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.116

  • S = 1.06

  • 1098 reflections

  • 91 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.896 (19) 1.980 (19) 2.8659 (19) 169.56 (18)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Triazoles play an important role in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne, 1994; Abu-Orabi et al., 1989).

The crystal structure of the title compound is stabilized by intermolecular N—H···O hydrogen bonds and π···π stacking interactions between the triazole rings at (symmetry operator 1+X,Y,Z; centroid-centroid distance 3.882 Å).

Related literature top

For general background, see: Abu-Orabi et al. (1989); Fan & Katritzky (1996); Dehne (1994); Wang et al. (1998).

Experimental top

A mixture of methylpropiolate, 1 and trimethylsilylazide, 2 were heated at 100 °C till the completion of reaction, monitored by TLC. Then reaction mixture was cooled and methanol was added dropwise with cooling. The solid formed was allowed to stand for 30 min and filtered off, washed with ether, then with hexane. The product was then isolated as a colourless solid by column chromatography using 10% pet.ether/EtOAc. The single-crystal for X-ray structue anlaysis was obtained from ether solution by slow evaporation.

Refinement top

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H bond lengths of 0.93 Å and 0.97 Å for aromatic and for methyl H atoms respectively and Uiso(H) = 1.2Ueq(C) for all carbon bound H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the asymmetric unit of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound. The dotted lines indicate intermolecular N—H···O hydrogen bonds.
Methyl 1H-1,2,3-triazole-4-carboxylate top
Crystal data top
C4H5N3O2F(000) = 264
Mr = 127.11Dx = 1.436 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1804 reflections
a = 3.8823 (7) Åθ = 2.4–25.5°
b = 17.499 (3) ŵ = 0.12 mm1
c = 8.8171 (17) ÅT = 290 K
β = 100.938 (3)°Block, pale yellow
V = 588.12 (19) Å30.30 × 0.23 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1098 independent reflections
Radiation source: fine-focus sealed tube917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 44
Tmin = 0.956, Tmax = 0.977k = 2120
4285 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.085P]
where P = (Fo2 + 2Fc2)/3
1098 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C4H5N3O2V = 588.12 (19) Å3
Mr = 127.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.8823 (7) ŵ = 0.12 mm1
b = 17.499 (3) ÅT = 290 K
c = 8.8171 (17) Å0.30 × 0.23 × 0.20 mm
β = 100.938 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
917 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.977Rint = 0.016
4285 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.20 e Å3
1098 reflectionsΔρmin = 0.12 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H3N0.668 (5)0.1865 (11)0.529 (2)0.069 (6)*
H10.630 (5)0.3213 (10)0.510 (2)0.067 (5)*
O10.2633 (4)0.39888 (6)0.89548 (14)0.0672 (4)
O20.4220 (4)0.44536 (7)0.68279 (14)0.0670 (4)
C30.3702 (4)0.38941 (9)0.77686 (18)0.0502 (4)
N30.5970 (4)0.21920 (8)0.59504 (15)0.0520 (4)
C20.4540 (4)0.31459 (8)0.71907 (16)0.0440 (4)
N20.5029 (4)0.19156 (8)0.72315 (16)0.0577 (4)
C10.5704 (4)0.29447 (9)0.58856 (18)0.0495 (4)
N10.4149 (4)0.25012 (7)0.79947 (15)0.0541 (4)
C40.3391 (8)0.52244 (11)0.7273 (3)0.0937 (8)
H4A0.08940.52960.70560.141*
H4B0.44720.55900.67000.141*
H4C0.42610.52950.83580.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0984 (10)0.0524 (7)0.0599 (8)0.0045 (6)0.0379 (7)0.0077 (5)
O20.0959 (10)0.0450 (7)0.0671 (8)0.0012 (6)0.0330 (7)0.0062 (5)
C30.0556 (9)0.0481 (9)0.0482 (9)0.0045 (7)0.0137 (7)0.0012 (7)
N30.0643 (9)0.0499 (8)0.0443 (8)0.0026 (6)0.0167 (6)0.0038 (6)
C20.0478 (8)0.0464 (8)0.0384 (8)0.0034 (6)0.0095 (6)0.0015 (6)
N20.0754 (10)0.0480 (8)0.0532 (8)0.0009 (6)0.0213 (7)0.0017 (6)
C10.0597 (10)0.0499 (9)0.0410 (9)0.0013 (7)0.0152 (7)0.0031 (7)
N10.0702 (9)0.0480 (8)0.0478 (8)0.0016 (6)0.0207 (7)0.0011 (5)
C40.134 (2)0.0464 (11)0.1117 (18)0.0019 (11)0.0499 (16)0.0029 (11)
Geometric parameters (Å, º) top
O1—C31.2075 (19)C2—N11.3561 (19)
O2—C31.3231 (19)C2—C11.360 (2)
O2—C41.458 (2)N2—N11.3065 (19)
C3—C21.464 (2)C1—H10.906 (19)
N3—C11.322 (2)C4—H4A0.9600
N3—N21.3416 (19)C4—H4B0.9600
N3—H3N0.90 (2)C4—H4C0.9600
C3—O2—C4116.63 (15)N3—C1—C2104.91 (14)
O1—C3—O2124.02 (15)N3—C1—H1121.4 (12)
O1—C3—C2124.05 (14)C2—C1—H1133.7 (12)
O2—C3—C2111.92 (13)N2—N1—C2108.49 (13)
C1—N3—N2111.36 (14)O2—C4—H4A109.5
C1—N3—H3N129.6 (12)O2—C4—H4B109.5
N2—N3—H3N119.0 (12)H4A—C4—H4B109.5
N1—C2—C1108.37 (14)O2—C4—H4C109.5
N1—C2—C3120.51 (13)H4A—C4—H4C109.5
C1—C2—C3131.12 (14)H4B—C4—H4C109.5
N1—N2—N3106.88 (13)
C4—O2—C3—O10.7 (3)N2—N3—C1—C20.00 (17)
C4—O2—C3—C2178.67 (17)N1—C2—C1—N30.01 (17)
O1—C3—C2—N10.2 (2)C3—C2—C1—N3179.24 (16)
O2—C3—C2—N1179.54 (14)N3—N2—N1—C20.03 (18)
O1—C3—C2—C1178.95 (17)C1—C2—N1—N20.03 (18)
O2—C3—C2—C10.4 (2)C3—C2—N1—N2179.35 (13)
C1—N3—N2—N10.02 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.896 (19)1.980 (19)2.8659 (19)169.56 (18)
Symmetry code: (i) x+1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC4H5N3O2
Mr127.11
Crystal system, space groupMonoclinic, P21/n
Temperature (K)290
a, b, c (Å)3.8823 (7), 17.499 (3), 8.8171 (17)
β (°) 100.938 (3)
V3)588.12 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.23 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.956, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
4285, 1098, 917
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.116, 1.06
No. of reflections1098
No. of parameters91
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.12

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.896 (19)1.980 (19)2.8659 (19)169.56 (18)
Symmetry code: (i) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationAbu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari'i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem. 26, 1461–1468.  CrossRef CAS Google Scholar
First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDehne, H. (1994). Methoden der Organischen Chemie, Vol. E8d, edited by E. Schaumann, pp. 305–405. Stuttgart: Thieme.  Google Scholar
First citationFan, W.-Q. & Katritzky, A. R. (1996). Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds