organic compounds
2,4-Dichloro-6-methoxyquinoline
aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in
The title compound, C10H7Cl2NO, features a planar molecule, excluding the methyl H atoms [maximum deviation = 0.0385 (1) Å]. The crystal packing is stabilized by π–π stacking interactions across inversion centres [centroid-to-centroid distance = 3.736 (3) Å].
Related literature
For general background, see: Fournet et al. (1981) and references cited therein; Towers et al. (1981); Biavatti et al. (2002); McCormick et al. (1996); Ziegler & Gelfert, (1959). For related crystal structures, see: Somvanshi et al. (2008).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).
Supporting information
10.1107/S1600536809002402/bt2852sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002402/bt2852Isup2.hkl
p-Anisidine (10 mmol) and malonic acid (15 mmol) were heated under reflux in phosphorus oxychloride (20 ml), with stirring, for 5 h. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5 M sodium hydroxide. Filtration gave the crude product as a brown solid. A
(95:5 hexane–EtOAc) yielded the pure dichloroquinoline as off-white needlesAll the H atoms were positioned geometrically and refined using a riding model [C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.
Data collection: SMART (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).C10H7Cl2NO | Z = 2 |
Mr = 228.07 | F(000) = 232 |
Triclinic, P1 | Dx = 1.570 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.431 (2) Å | Cell parameters from 856 reflections |
b = 8.889 (2) Å | θ = 1.9–20.7° |
c = 9.083 (4) Å | µ = 0.63 mm−1 |
α = 116.660 (19)° | T = 290 K |
β = 102.301 (2)° | Block, colourless |
γ = 104.150 (14)° | 0.25 × 0.18 × 0.15 mm |
V = 482.5 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 1782 independent reflections |
Radiation source: fine-focus sealed tube | 1272 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.054 |
ϕ and ω scans | θmax = 25.5°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −5→8 |
Tmin = 0.811, Tmax = 0.909 | k = −10→10 |
5720 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.065 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.197 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.0844P)2 + 0.6982P] where P = (Fo2 + 2Fc2)/3 |
1782 reflections | (Δ/σ)max < 0.001 |
128 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
C10H7Cl2NO | γ = 104.150 (14)° |
Mr = 228.07 | V = 482.5 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.431 (2) Å | Mo Kα radiation |
b = 8.889 (2) Å | µ = 0.63 mm−1 |
c = 9.083 (4) Å | T = 290 K |
α = 116.660 (19)° | 0.25 × 0.18 × 0.15 mm |
β = 102.301 (2)° |
Bruker SMART CCD area-detector diffractometer | 1782 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1272 reflections with I > 2σ(I) |
Tmin = 0.811, Tmax = 0.909 | Rint = 0.054 |
5720 measured reflections |
R[F2 > 2σ(F2)] = 0.065 | 0 restraints |
wR(F2) = 0.197 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.38 e Å−3 |
1782 reflections | Δρmin = −0.64 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.3126 (2) | 1.55448 (15) | 0.76004 (16) | 0.0555 (4) | |
Cl2 | 0.2701 (2) | 0.98994 (16) | 0.84707 (16) | 0.0592 (5) | |
N1 | 0.2689 (5) | 1.2373 (5) | 0.5081 (5) | 0.0400 (9) | |
O1 | 0.2020 (5) | 0.5198 (4) | 0.1887 (4) | 0.0517 (8) | |
C1 | 0.2837 (6) | 1.3262 (5) | 0.6714 (6) | 0.0383 (10) | |
C2 | 0.2849 (6) | 1.2594 (5) | 0.7862 (5) | 0.0382 (9) | |
H2 | 0.2972 | 1.3312 | 0.9031 | 0.046* | |
C3 | 0.2666 (6) | 1.0805 (6) | 0.7130 (5) | 0.0378 (9) | |
C4 | 0.2323 (6) | 0.7880 (5) | 0.4545 (6) | 0.0380 (9) | |
H4 | 0.2318 | 0.7305 | 0.5184 | 0.046* | |
C5 | 0.2168 (6) | 0.6950 (5) | 0.2814 (6) | 0.0392 (10) | |
C6 | 0.2134 (7) | 0.7815 (6) | 0.1824 (6) | 0.0422 (10) | |
H6 | 0.1994 | 0.7169 | 0.0641 | 0.051* | |
C7 | 0.2302 (7) | 0.9572 (6) | 0.2591 (6) | 0.0421 (10) | |
H7 | 0.2294 | 1.0119 | 0.1926 | 0.051* | |
C8 | 0.2489 (6) | 1.0586 (5) | 0.4363 (5) | 0.0350 (9) | |
C9 | 0.2491 (6) | 0.9716 (5) | 0.5361 (5) | 0.0344 (9) | |
C10 | 0.2067 (8) | 0.4245 (7) | 0.2807 (7) | 0.0573 (13) | |
H10A | 0.3330 | 0.4855 | 0.3778 | 0.086* | |
H10B | 0.1897 | 0.3014 | 0.2006 | 0.086* | |
H10C | 0.1007 | 0.4228 | 0.3254 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0789 (9) | 0.0407 (6) | 0.0592 (8) | 0.0310 (6) | 0.0316 (6) | 0.0293 (6) |
Cl2 | 0.0927 (11) | 0.0533 (7) | 0.0488 (7) | 0.0298 (7) | 0.0288 (6) | 0.0383 (6) |
N1 | 0.049 (2) | 0.0396 (19) | 0.046 (2) | 0.0226 (17) | 0.0195 (17) | 0.0300 (17) |
O1 | 0.070 (2) | 0.0391 (16) | 0.0490 (18) | 0.0252 (16) | 0.0202 (16) | 0.0246 (15) |
C1 | 0.038 (2) | 0.035 (2) | 0.047 (2) | 0.0168 (18) | 0.0141 (19) | 0.0248 (19) |
C2 | 0.038 (2) | 0.044 (2) | 0.038 (2) | 0.0176 (19) | 0.0164 (18) | 0.0234 (19) |
C3 | 0.040 (2) | 0.042 (2) | 0.041 (2) | 0.0169 (18) | 0.0150 (18) | 0.0284 (19) |
C4 | 0.039 (2) | 0.039 (2) | 0.044 (2) | 0.0151 (18) | 0.0138 (19) | 0.0295 (19) |
C5 | 0.039 (2) | 0.035 (2) | 0.045 (2) | 0.0148 (18) | 0.0130 (19) | 0.0232 (19) |
C6 | 0.053 (3) | 0.045 (2) | 0.036 (2) | 0.023 (2) | 0.0185 (19) | 0.0234 (19) |
C7 | 0.055 (3) | 0.044 (2) | 0.042 (2) | 0.025 (2) | 0.020 (2) | 0.030 (2) |
C8 | 0.036 (2) | 0.037 (2) | 0.038 (2) | 0.0151 (17) | 0.0127 (17) | 0.0239 (18) |
C9 | 0.032 (2) | 0.036 (2) | 0.039 (2) | 0.0127 (17) | 0.0127 (17) | 0.0235 (18) |
C10 | 0.070 (3) | 0.048 (3) | 0.074 (3) | 0.028 (2) | 0.030 (3) | 0.043 (3) |
Cl1—C1 | 1.749 (4) | C4—C9 | 1.415 (5) |
Cl2—C3 | 1.734 (4) | C4—H4 | 0.9300 |
N1—C1 | 1.293 (5) | C5—C6 | 1.422 (6) |
N1—C8 | 1.372 (5) | C6—C7 | 1.352 (6) |
O1—C5 | 1.359 (5) | C6—H6 | 0.9300 |
O1—C10 | 1.433 (5) | C7—C8 | 1.402 (6) |
C1—C2 | 1.412 (5) | C7—H7 | 0.9300 |
C2—C3 | 1.377 (6) | C8—C9 | 1.432 (5) |
C2—H2 | 0.9300 | C10—H10A | 0.9600 |
C3—C9 | 1.411 (6) | C10—H10B | 0.9600 |
C4—C5 | 1.370 (6) | C10—H10C | 0.9600 |
C1—N1—C8 | 117.4 (3) | C7—C6—H6 | 119.8 |
C5—O1—C10 | 117.2 (4) | C5—C6—H6 | 119.8 |
N1—C1—C2 | 126.7 (4) | C6—C7—C8 | 121.6 (4) |
N1—C1—Cl1 | 116.3 (3) | C6—C7—H7 | 119.2 |
C2—C1—Cl1 | 117.0 (3) | C8—C7—H7 | 119.2 |
C3—C2—C1 | 115.3 (4) | N1—C8—C7 | 119.1 (3) |
C3—C2—H2 | 122.3 | N1—C8—C9 | 122.6 (4) |
C1—C2—H2 | 122.3 | C7—C8—C9 | 118.3 (4) |
C2—C3—C9 | 122.4 (3) | C3—C9—C4 | 125.0 (4) |
C2—C3—Cl2 | 117.9 (3) | C3—C9—C8 | 115.5 (3) |
C9—C3—Cl2 | 119.6 (3) | C4—C9—C8 | 119.5 (4) |
C5—C4—C9 | 120.1 (4) | O1—C10—H10A | 109.5 |
C5—C4—H4 | 120.0 | O1—C10—H10B | 109.5 |
C9—C4—H4 | 120.0 | H10A—C10—H10B | 109.5 |
O1—C5—C4 | 125.8 (4) | O1—C10—H10C | 109.5 |
O1—C5—C6 | 114.1 (4) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 120.0 (4) | H10B—C10—H10C | 109.5 |
C7—C6—C5 | 120.5 (4) | ||
C8—N1—C1—C2 | 1.2 (6) | C1—N1—C8—C9 | −1.6 (6) |
C8—N1—C1—Cl1 | 179.1 (3) | C6—C7—C8—N1 | 178.9 (4) |
N1—C1—C2—C3 | −0.6 (6) | C6—C7—C8—C9 | −0.2 (7) |
Cl1—C1—C2—C3 | −178.5 (3) | C2—C3—C9—C4 | 179.2 (4) |
C1—C2—C3—C9 | 0.4 (6) | Cl2—C3—C9—C4 | 0.4 (6) |
C1—C2—C3—Cl2 | 179.2 (3) | C2—C3—C9—C8 | −0.8 (6) |
C10—O1—C5—C4 | −1.2 (6) | Cl2—C3—C9—C8 | −179.6 (3) |
C10—O1—C5—C6 | 179.3 (4) | C5—C4—C9—C3 | −179.8 (4) |
C9—C4—C5—O1 | 179.3 (4) | C5—C4—C9—C8 | 0.3 (6) |
C9—C4—C5—C6 | −1.3 (6) | N1—C8—C9—C3 | 1.5 (6) |
O1—C5—C6—C7 | −178.9 (4) | C7—C8—C9—C3 | −179.5 (4) |
C4—C5—C6—C7 | 1.6 (7) | N1—C8—C9—C4 | −178.6 (4) |
C5—C6—C7—C8 | −0.8 (7) | C7—C8—C9—C4 | 0.5 (6) |
C1—N1—C8—C7 | 179.3 (4) |
Experimental details
Crystal data | |
Chemical formula | C10H7Cl2NO |
Mr | 228.07 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 290 |
a, b, c (Å) | 7.431 (2), 8.889 (2), 9.083 (4) |
α, β, γ (°) | 116.660 (19), 102.301 (2), 104.150 (14) |
V (Å3) | 482.5 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.63 |
Crystal size (mm) | 0.25 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.811, 0.909 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5720, 1782, 1272 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.065, 0.197, 1.15 |
No. of reflections | 1782 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.64 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).
Acknowledgements
The authors thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST programme at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.
References
Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859–863. CrossRef Google Scholar
McCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. 59, 469–471. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381–386. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Towers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142. CrossRef CAS PubMed Web of Science Google Scholar
Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
Ziegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822–826. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
A wide range of medicinal properties have already been identified in compounds containing the quinoline ring system including antiprotozoal (Fournet et al., 1981), antibacterial (Towers et al., 1981), antifungal (Biavatti et al., 2002) and antiviral activities (McCormick et al., 1996). Reaction of aniline with malonic acid in an excess of phosphorus oxychloride at reflux to give 2,4-dichloroquinoline was first reported by Ziegler & Gelfert (1959). A similar derivative of quinoline was synthesized from the mixture of p-toluidine and malonic acid in a one-pot reaction from an aryl amine, malonic acid and phosphorous oxychloride and its cytotoxicity has been reported (Somvanshi & Subashini et al., 2008). In continuous of our work, crystal structure of another derivative is reported in this paper.
The crystal packing is stabilized by intermolecular π–π [Cg1···Cg1 and Cg2···Cg2] stacking interactions with shortest perpendicular distances between isochinoline groups of 3.470 Å and 3.497 Å, the slippages between these ring systems are 1.283 Å and 1.178 Å, the distances between the centroids of the six-membered carbon rings are 3.700 (3) Å and 3.690 (3) Å with the symmetry code (2 - x, -y, 1 - z) and (1 - x, -y, 1 - z), respectively. Further, another intermolecular π–π [Cg1···Cg2] stacking interactions with a shortest perpendicular distance of 3.476 Å between the two rings and the distance between the centroids of the six-membered carbon rings is 3.736 (3) Å with the symmetry code (2 - x, -y, -z). Cg1 and Cg2 are the centroids of N1—C1—C2—C3—C4—C8—C9 ring and C4–C9 ring respectively.