organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-6-meth­oxy­quinoline

aOrganic Chemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 14 January 2009; accepted 19 January 2009; online 23 January 2009)

The title compound, C10H7Cl2NO, features a planar mol­ecule, excluding the methyl H atoms [maximum deviation = 0.0385 (1) Å]. The crystal packing is stabilized by ππ stacking inter­actions across inversion centres [centroid-to-centroid distance = 3.736 (3) Å].

Related literature

For general background, see: Fournet et al. (1981[Fournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859-863.]) and references cited therein; Towers et al. (1981[Towers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136-142.]); Biavatti et al. (2002[Biavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66-70.]); McCormick et al. (1996[McCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. 59, 469-471.]); Ziegler & Gelfert, (1959[Ziegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822-826.]). For related crystal structures, see: Somvanshi et al. (2008[Somvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381-386.]).

[Scheme 1]

Experimental

Crystal data
  • C10H7Cl2NO

  • Mr = 228.07

  • Triclinic, [P \overline 1]

  • a = 7.431 (2) Å

  • b = 8.889 (2) Å

  • c = 9.083 (4) Å

  • α = 116.660 (19)°

  • β = 102.301 (2)°

  • γ = 104.150 (14)°

  • V = 482.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 290 (2) K

  • 0.25 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.811, Tmax = 0.909

  • 5720 measured reflections

  • 1782 independent reflections

  • 1272 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.197

  • S = 1.15

  • 1782 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and CAMERON (Watkin et al., 1993[Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

A wide range of medicinal properties have already been identified in compounds containing the quinoline ring system including antiprotozoal (Fournet et al., 1981), antibacterial (Towers et al., 1981), antifungal (Biavatti et al., 2002) and antiviral activities (McCormick et al., 1996). Reaction of aniline with malonic acid in an excess of phosphorus oxychloride at reflux to give 2,4-dichloroquinoline was first reported by Ziegler & Gelfert (1959). A similar derivative of quinoline was synthesized from the mixture of p-toluidine and malonic acid in a one-pot reaction from an aryl amine, malonic acid and phosphorous oxychloride and its cytotoxicity has been reported (Somvanshi & Subashini et al., 2008). In continuous of our work, crystal structure of another derivative is reported in this paper.

The crystal packing is stabilized by intermolecular ππ [Cg1···Cg1 and Cg2···Cg2] stacking interactions with shortest perpendicular distances between isochinoline groups of 3.470 Å and 3.497 Å, the slippages between these ring systems are 1.283 Å and 1.178 Å, the distances between the centroids of the six-membered carbon rings are 3.700 (3) Å and 3.690 (3) Å with the symmetry code (2 - x, -y, 1 - z) and (1 - x, -y, 1 - z), respectively. Further, another intermolecular ππ [Cg1···Cg2] stacking interactions with a shortest perpendicular distance of 3.476 Å between the two rings and the distance between the centroids of the six-membered carbon rings is 3.736 (3) Å with the symmetry code (2 - x, -y, -z). Cg1 and Cg2 are the centroids of N1—C1—C2—C3—C4—C8—C9 ring and C4–C9 ring respectively.

Related literature top

For general background, see: Fournet et al. (1981) and references cited therein; Towers et al. (1981); Biavatti et al. (2002); McCormick et al. (1996); Ziegler & Gelfert, (1959). For related crystal structures, see: Somvanshi et al. (2008).

Experimental top

p-Anisidine (10 mmol) and malonic acid (15 mmol) were heated under reflux in phosphorus oxychloride (20 ml), with stirring, for 5 h. The mixture was cooled, poured into crushed ice with vigorous stirring and then made alkaline with 5 M sodium hydroxide. Filtration gave the crude product as a brown solid. A Column chromatography (95:5 hexane–EtOAc) yielded the pure dichloroquinoline as off-white needles

Refinement top

All the H atoms were positioned geometrically and refined using a riding model [C—H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methyl and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound. The dotted lines indicate ππ interactions. All H atoms have been omitted for clarity.
2,4-Dichloro-6-methoxyquinoline top
Crystal data top
C10H7Cl2NOZ = 2
Mr = 228.07F(000) = 232
Triclinic, P1Dx = 1.570 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.431 (2) ÅCell parameters from 856 reflections
b = 8.889 (2) Åθ = 1.9–20.7°
c = 9.083 (4) ŵ = 0.63 mm1
α = 116.660 (19)°T = 290 K
β = 102.301 (2)°Block, colourless
γ = 104.150 (14)°0.25 × 0.18 × 0.15 mm
V = 482.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1782 independent reflections
Radiation source: fine-focus sealed tube1272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 58
Tmin = 0.811, Tmax = 0.909k = 1010
5720 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0844P)2 + 0.6982P]
where P = (Fo2 + 2Fc2)/3
1782 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C10H7Cl2NOγ = 104.150 (14)°
Mr = 228.07V = 482.5 (3) Å3
Triclinic, P1Z = 2
a = 7.431 (2) ÅMo Kα radiation
b = 8.889 (2) ŵ = 0.63 mm1
c = 9.083 (4) ÅT = 290 K
α = 116.660 (19)°0.25 × 0.18 × 0.15 mm
β = 102.301 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1782 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1272 reflections with I > 2σ(I)
Tmin = 0.811, Tmax = 0.909Rint = 0.054
5720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.15Δρmax = 0.38 e Å3
1782 reflectionsΔρmin = 0.64 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.3126 (2)1.55448 (15)0.76004 (16)0.0555 (4)
Cl20.2701 (2)0.98994 (16)0.84707 (16)0.0592 (5)
N10.2689 (5)1.2373 (5)0.5081 (5)0.0400 (9)
O10.2020 (5)0.5198 (4)0.1887 (4)0.0517 (8)
C10.2837 (6)1.3262 (5)0.6714 (6)0.0383 (10)
C20.2849 (6)1.2594 (5)0.7862 (5)0.0382 (9)
H20.29721.33120.90310.046*
C30.2666 (6)1.0805 (6)0.7130 (5)0.0378 (9)
C40.2323 (6)0.7880 (5)0.4545 (6)0.0380 (9)
H40.23180.73050.51840.046*
C50.2168 (6)0.6950 (5)0.2814 (6)0.0392 (10)
C60.2134 (7)0.7815 (6)0.1824 (6)0.0422 (10)
H60.19940.71690.06410.051*
C70.2302 (7)0.9572 (6)0.2591 (6)0.0421 (10)
H70.22941.01190.19260.051*
C80.2489 (6)1.0586 (5)0.4363 (5)0.0350 (9)
C90.2491 (6)0.9716 (5)0.5361 (5)0.0344 (9)
C100.2067 (8)0.4245 (7)0.2807 (7)0.0573 (13)
H10A0.33300.48550.37780.086*
H10B0.18970.30140.20060.086*
H10C0.10070.42280.32540.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0789 (9)0.0407 (6)0.0592 (8)0.0310 (6)0.0316 (6)0.0293 (6)
Cl20.0927 (11)0.0533 (7)0.0488 (7)0.0298 (7)0.0288 (6)0.0383 (6)
N10.049 (2)0.0396 (19)0.046 (2)0.0226 (17)0.0195 (17)0.0300 (17)
O10.070 (2)0.0391 (16)0.0490 (18)0.0252 (16)0.0202 (16)0.0246 (15)
C10.038 (2)0.035 (2)0.047 (2)0.0168 (18)0.0141 (19)0.0248 (19)
C20.038 (2)0.044 (2)0.038 (2)0.0176 (19)0.0164 (18)0.0234 (19)
C30.040 (2)0.042 (2)0.041 (2)0.0169 (18)0.0150 (18)0.0284 (19)
C40.039 (2)0.039 (2)0.044 (2)0.0151 (18)0.0138 (19)0.0295 (19)
C50.039 (2)0.035 (2)0.045 (2)0.0148 (18)0.0130 (19)0.0232 (19)
C60.053 (3)0.045 (2)0.036 (2)0.023 (2)0.0185 (19)0.0234 (19)
C70.055 (3)0.044 (2)0.042 (2)0.025 (2)0.020 (2)0.030 (2)
C80.036 (2)0.037 (2)0.038 (2)0.0151 (17)0.0127 (17)0.0239 (18)
C90.032 (2)0.036 (2)0.039 (2)0.0127 (17)0.0127 (17)0.0235 (18)
C100.070 (3)0.048 (3)0.074 (3)0.028 (2)0.030 (3)0.043 (3)
Geometric parameters (Å, º) top
Cl1—C11.749 (4)C4—C91.415 (5)
Cl2—C31.734 (4)C4—H40.9300
N1—C11.293 (5)C5—C61.422 (6)
N1—C81.372 (5)C6—C71.352 (6)
O1—C51.359 (5)C6—H60.9300
O1—C101.433 (5)C7—C81.402 (6)
C1—C21.412 (5)C7—H70.9300
C2—C31.377 (6)C8—C91.432 (5)
C2—H20.9300C10—H10A0.9600
C3—C91.411 (6)C10—H10B0.9600
C4—C51.370 (6)C10—H10C0.9600
C1—N1—C8117.4 (3)C7—C6—H6119.8
C5—O1—C10117.2 (4)C5—C6—H6119.8
N1—C1—C2126.7 (4)C6—C7—C8121.6 (4)
N1—C1—Cl1116.3 (3)C6—C7—H7119.2
C2—C1—Cl1117.0 (3)C8—C7—H7119.2
C3—C2—C1115.3 (4)N1—C8—C7119.1 (3)
C3—C2—H2122.3N1—C8—C9122.6 (4)
C1—C2—H2122.3C7—C8—C9118.3 (4)
C2—C3—C9122.4 (3)C3—C9—C4125.0 (4)
C2—C3—Cl2117.9 (3)C3—C9—C8115.5 (3)
C9—C3—Cl2119.6 (3)C4—C9—C8119.5 (4)
C5—C4—C9120.1 (4)O1—C10—H10A109.5
C5—C4—H4120.0O1—C10—H10B109.5
C9—C4—H4120.0H10A—C10—H10B109.5
O1—C5—C4125.8 (4)O1—C10—H10C109.5
O1—C5—C6114.1 (4)H10A—C10—H10C109.5
C4—C5—C6120.0 (4)H10B—C10—H10C109.5
C7—C6—C5120.5 (4)
C8—N1—C1—C21.2 (6)C1—N1—C8—C91.6 (6)
C8—N1—C1—Cl1179.1 (3)C6—C7—C8—N1178.9 (4)
N1—C1—C2—C30.6 (6)C6—C7—C8—C90.2 (7)
Cl1—C1—C2—C3178.5 (3)C2—C3—C9—C4179.2 (4)
C1—C2—C3—C90.4 (6)Cl2—C3—C9—C40.4 (6)
C1—C2—C3—Cl2179.2 (3)C2—C3—C9—C80.8 (6)
C10—O1—C5—C41.2 (6)Cl2—C3—C9—C8179.6 (3)
C10—O1—C5—C6179.3 (4)C5—C4—C9—C3179.8 (4)
C9—C4—C5—O1179.3 (4)C5—C4—C9—C80.3 (6)
C9—C4—C5—C61.3 (6)N1—C8—C9—C31.5 (6)
O1—C5—C6—C7178.9 (4)C7—C8—C9—C3179.5 (4)
C4—C5—C6—C71.6 (7)N1—C8—C9—C4178.6 (4)
C5—C6—C7—C80.8 (7)C7—C8—C9—C40.5 (6)
C1—N1—C8—C7179.3 (4)

Experimental details

Crystal data
Chemical formulaC10H7Cl2NO
Mr228.07
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)7.431 (2), 8.889 (2), 9.083 (4)
α, β, γ (°)116.660 (19), 102.301 (2), 104.150 (14)
V3)482.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.25 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.811, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
5720, 1782, 1272
Rint0.054
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.197, 1.15
No. of reflections1782
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.64

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).

 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST programme at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBiavatti, M. W., Vieira, P. C., da Silva, M. F. G. F., Fernandes, J. B., Victor, S. R., Pagnocca, F. C., Albuquerque, S., Caracelli, I. & Zukerman-Schpector, J. (2002). J. Braz. Chem. Soc. 13, 66–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFournet, A., Barrios, A. A., Munioz, V., Hocquemiller, R., Cave, A. & Bruneton, J. (1981). J. Antimicrob. Agents Chemother. 37, 859–863.  CrossRef Google Scholar
First citationMcCormick, J. L., McKee, T. C., Cardellina, J. H. & Boyd, M. R. (1996). J. Nat. Prod. 59, 469–471.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSomvanshi, R. K., Subashini, R., Dhanasekaran, V., Arulprakash, G., Das, S. N. & Dey, S. (2008). J. Chem. Crystallogr. 38, 381–386.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTowers, G. H. N., Grahanm, E. A., Spenser, I. D. & Abramowski, Z. (1981). Planta Med. 41, 136–142.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWatkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationZiegler, E. & Gelfert, K. (1959). Monatsh. Chem. 90, 822–826.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds