organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 January 2009; accepted 16 January 2009; online 23 January 2009)

In the crystal structure of the title compound, C14H15NO2S, the amino H atom is trans to one of the O atoms of the SO2 group. Furthermore, the N—H bond is anti to the ortho- and meta-methyl groups of the aromatic ring. The two aromatic rings are tilted relative to each other by 64.8 (1)°. The mol­ecules form zigzag chains along the a axis via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Gowda et al. (2005[Gowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106-112.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15NO2S

  • Mr = 261.33

  • Orthorhombic, P 21 21 21

  • a = 6.3969 (5) Å

  • b = 8.8767 (6) Å

  • c = 23.082 (2) Å

  • V = 1310.67 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 299 (2) K

  • 0.50 × 0.30 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.889, Tmax = 0.958

  • 5869 measured reflections

  • 2611 independent reflections

  • 2200 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.07

  • 2611 reflections

  • 168 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1060 Friedel pairs

  • Flack parameter: −0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (3) 2.10 (3) 2.936 (2) 176 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the crystal structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008a, 2008b, 2008c), the structure of N-(2,3-dimethylphenyl)-benzenesulfonamide has been determined. The amino H atom is trans to one of the O atoms of the SO2 group (Fig. 1), similar to that observed in N-(2,6-dimethylphenyl)- benzenesulfonamide (Gowda et al., 2008a), N-(2-methylphenyl)-benzenesulfonamide (Gowda et al., 2008b) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007; Gowda et al., 2008c). The two benzene rings are tilted relative to each other by 64.8 (1)°, compared with the values of 44.9 (1)° in N-(2,6-dimethylphenyl)- benzenesulfonamide and 61.5 (1)° in N-(2-methylphenyl)-benzenesulfonamide. The other bond parameters of the title compound are similar to those observed in other N-(aryl)-sulfonamides. The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds forming zigzag chains along the a axis (Table 1, Fig. 2).

Related literature top

For related literature, see: Gelbrich et al. (2007); Gowda et al. (2005); Gowda et al. (2008a,b,c); Perlovich et al. (2006)

Experimental top

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 2,3-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(2,3-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Gowda et al., 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The C-bound H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 or 0.96 Å. The H atom of the NH group was located in difference map, and its positional parameters were refined freely. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

To improve considerably values of R1, wR2, and GOOF three reflections (0 1 1, 0 1 2, 0 1 3) were omitted from the refinement.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
N-(2,3-Dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H15NO2SF(000) = 552
Mr = 261.33Dx = 1.324 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2432 reflections
a = 6.3969 (5) Åθ = 2.3–27.7°
b = 8.8767 (6) ŵ = 0.24 mm1
c = 23.082 (2) ÅT = 299 K
V = 1310.67 (18) Å3Rod, colourless
Z = 40.50 × 0.30 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2611 independent reflections
Radiation source: fine-focus sealed tube2200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 77
Tmin = 0.889, Tmax = 0.958k = 511
5869 measured reflectionsl = 1328
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1566P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.025
2611 reflectionsΔρmax = 0.20 e Å3
168 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 1060 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (9)
Crystal data top
C14H15NO2SV = 1310.67 (18) Å3
Mr = 261.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3969 (5) ŵ = 0.24 mm1
b = 8.8767 (6) ÅT = 299 K
c = 23.082 (2) Å0.50 × 0.30 × 0.18 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2611 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2200 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.958Rint = 0.014
5869 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094Δρmax = 0.20 e Å3
S = 1.07Δρmin = 0.19 e Å3
2611 reflectionsAbsolute structure: Flack (1983), 1060 Friedel pairs
168 parametersAbsolute structure parameter: 0.04 (9)
0 restraints
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2823 (3)0.0378 (2)0.43543 (9)0.0389 (5)
C20.4720 (4)0.0422 (3)0.46456 (11)0.0507 (6)
H20.51240.03740.48820.061*
C30.5998 (4)0.1662 (3)0.45797 (13)0.0651 (7)
H30.72620.17080.47780.078*
C40.5424 (5)0.2816 (3)0.42263 (14)0.0701 (9)
H40.62850.36550.41890.084*
C50.3566 (6)0.2746 (3)0.39226 (13)0.0740 (9)
H50.32060.35190.36700.089*
C60.2245 (5)0.1532 (3)0.39934 (11)0.0564 (6)
H60.09740.14960.37980.068*
C70.2683 (4)0.2922 (2)0.36164 (9)0.0419 (5)
C80.1257 (4)0.3805 (2)0.33190 (9)0.0441 (5)
C90.1664 (4)0.4088 (3)0.27267 (10)0.0536 (6)
C100.3383 (5)0.3483 (3)0.24667 (12)0.0701 (8)
H100.36320.36790.20770.084*
C110.4762 (5)0.2585 (3)0.27715 (13)0.0757 (9)
H110.59090.21670.25830.091*
C120.4452 (4)0.2308 (3)0.33475 (11)0.0566 (7)
H120.53950.17240.35570.068*
C130.0598 (4)0.4452 (3)0.36156 (12)0.0601 (7)
H13A0.04570.55280.36370.072*
H13B0.06970.40450.40000.072*
H13C0.18370.42030.34020.072*
C140.0210 (6)0.5071 (4)0.23845 (14)0.0840 (10)
H14A0.02140.60700.25440.101*
H14B0.11790.46640.24020.101*
H14C0.06650.51080.19880.101*
N10.2351 (3)0.2670 (2)0.42314 (7)0.0413 (5)
H1N0.337 (4)0.290 (3)0.4439 (10)0.050*
O10.0648 (3)0.09633 (19)0.41129 (7)0.0567 (5)
O20.0967 (3)0.13781 (18)0.50761 (6)0.0577 (5)
S10.11619 (8)0.11797 (6)0.44610 (2)0.04071 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (12)0.0325 (11)0.0367 (11)0.0028 (9)0.0072 (10)0.0039 (9)
C20.0512 (14)0.0446 (13)0.0562 (15)0.0015 (11)0.0003 (11)0.0037 (11)
C30.0525 (15)0.0602 (15)0.0826 (19)0.0094 (13)0.0059 (15)0.0201 (14)
C40.074 (2)0.0485 (16)0.088 (2)0.0167 (14)0.0292 (17)0.0089 (14)
C50.103 (3)0.0439 (14)0.0747 (19)0.0003 (17)0.0165 (19)0.0139 (13)
C60.0650 (16)0.0453 (14)0.0588 (15)0.0036 (13)0.0013 (12)0.0065 (11)
C70.0453 (13)0.0366 (12)0.0437 (12)0.0046 (10)0.0013 (10)0.0016 (9)
C80.0463 (11)0.0389 (11)0.0471 (11)0.0040 (12)0.0060 (10)0.0038 (10)
C90.0728 (18)0.0463 (13)0.0418 (12)0.0153 (12)0.0039 (12)0.0044 (10)
C100.095 (2)0.0610 (17)0.0545 (15)0.0060 (16)0.0127 (16)0.0077 (13)
C110.0747 (19)0.0694 (19)0.083 (2)0.0123 (16)0.0330 (17)0.0058 (16)
C120.0488 (15)0.0536 (15)0.0674 (17)0.0070 (12)0.0105 (12)0.0128 (12)
C130.0515 (16)0.0658 (16)0.0631 (16)0.0125 (13)0.0018 (12)0.0035 (13)
C140.089 (2)0.094 (2)0.069 (2)0.002 (2)0.0176 (18)0.0251 (17)
N10.0473 (11)0.0380 (10)0.0384 (10)0.0017 (9)0.0094 (9)0.0001 (8)
O10.0425 (10)0.0555 (11)0.0721 (11)0.0045 (8)0.0070 (7)0.0018 (8)
O20.0708 (11)0.0589 (10)0.0432 (8)0.0133 (10)0.0158 (8)0.0008 (7)
S10.0425 (3)0.0397 (3)0.0399 (3)0.0026 (3)0.0038 (2)0.0009 (2)
Geometric parameters (Å, º) top
C1—C61.371 (3)C9—C101.363 (4)
C1—C21.388 (3)C9—C141.500 (4)
C1—S11.762 (2)C10—C111.381 (4)
C2—C31.379 (4)C10—H100.9300
C2—H20.9300C11—C121.367 (4)
C3—C41.360 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.381 (5)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—C61.380 (4)C13—H13C0.9600
C5—H50.9300C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.385 (3)C14—H14C0.9600
C7—C121.401 (3)N1—S11.615 (2)
C7—N11.453 (3)N1—H1N0.84 (3)
C8—C91.414 (3)O1—S11.4221 (17)
C8—C131.485 (3)O2—S11.4362 (15)
C6—C1—C2120.6 (2)C11—C10—H10119.4
C6—C1—S1120.57 (19)C12—C11—C10120.4 (3)
C2—C1—S1118.80 (16)C12—C11—H11119.8
C3—C2—C1119.2 (2)C10—C11—H11119.8
C3—C2—H2120.4C11—C12—C7118.6 (3)
C1—C2—H2120.4C11—C12—H12120.7
C4—C3—C2120.4 (3)C7—C12—H12120.7
C4—C3—H3119.8C8—C13—H13A109.5
C2—C3—H3119.8C8—C13—H13B109.5
C3—C4—C5120.2 (3)H13A—C13—H13B109.5
C3—C4—H4119.9C8—C13—H13C109.5
C5—C4—H4119.9H13A—C13—H13C109.5
C6—C5—C4120.1 (3)H13B—C13—H13C109.5
C6—C5—H5119.9C9—C14—H14A109.5
C4—C5—H5119.9C9—C14—H14B109.5
C1—C6—C5119.4 (3)H14A—C14—H14B109.5
C1—C6—H6120.3C9—C14—H14C109.5
C5—C6—H6120.3H14A—C14—H14C109.5
C8—C7—C12122.2 (2)H14B—C14—H14C109.5
C8—C7—N1118.4 (2)C7—N1—S1121.07 (14)
C12—C7—N1119.4 (2)C7—N1—H1N114.0 (17)
C7—C8—C9117.3 (2)S1—N1—H1N112.4 (17)
C7—C8—C13121.1 (2)O1—S1—O2120.28 (11)
C9—C8—C13121.6 (2)O1—S1—N1107.97 (10)
C10—C9—C8120.3 (2)O2—S1—N1105.37 (10)
C10—C9—C14119.8 (2)O1—S1—C1107.82 (10)
C8—C9—C14119.9 (2)O2—S1—C1106.68 (10)
C9—C10—C11121.2 (3)N1—S1—C1108.24 (9)
C9—C10—H10119.4
C6—C1—C2—C31.7 (3)C14—C9—C10—C11179.4 (3)
S1—C1—C2—C3177.83 (19)C9—C10—C11—C121.4 (5)
C1—C2—C3—C41.1 (4)C10—C11—C12—C71.6 (4)
C2—C3—C4—C51.0 (4)C8—C7—C12—C110.5 (4)
C3—C4—C5—C62.5 (4)N1—C7—C12—C11178.6 (2)
C2—C1—C6—C50.2 (4)C8—C7—N1—S195.3 (2)
S1—C1—C6—C5179.3 (2)C12—C7—N1—S186.4 (2)
C4—C5—C6—C11.9 (4)C7—N1—S1—O145.5 (2)
C12—C7—C8—C90.8 (3)C7—N1—S1—O2175.20 (17)
N1—C7—C8—C9177.31 (19)C7—N1—S1—C170.97 (19)
C12—C7—C8—C13179.5 (2)C6—C1—S1—O11.1 (2)
N1—C7—C8—C131.4 (3)C2—C1—S1—O1179.35 (17)
C7—C8—C9—C101.1 (3)C6—C1—S1—O2129.3 (2)
C13—C8—C9—C10179.7 (2)C2—C1—S1—O250.2 (2)
C7—C8—C9—C14178.3 (2)C6—C1—S1—N1117.7 (2)
C13—C8—C9—C140.3 (3)C2—C1—S1—N162.79 (19)
C8—C9—C10—C110.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (3)2.10 (3)2.936 (2)176 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H15NO2S
Mr261.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)6.3969 (5), 8.8767 (6), 23.082 (2)
V3)1310.67 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.50 × 0.30 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.889, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
5869, 2611, 2200
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.07
No. of reflections2611
No. of parameters168
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19
Absolute structureFlack (1983), 1060 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (3)2.10 (3)2.936 (2)176 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1692.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Shetty, M. & Jayalakshmi, K. L. (2005). Z. Naturforsch. Teil A, 60, 106–112.  CAS Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds