organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3-Chloro­benzo­yl)-3-(2,3-di­methyl­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: aminbadshah@yahoo.com

(Received 3 December 2008; accepted 1 January 2009; online 8 January 2009)

The title mol­ecule, C16H15ClN2OS, exists in the solid state in its thione form with typical thio­urea C—S and C—O bonds lengths, as well as shortened C—N bonds. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation and inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers. The dihedral angle between the aromatic rings is 50.18 (5)°.

Related literature

For related compounds, see: Khawar Rauf et al. (2006a[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859-o1860.],b[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221-o2222.],c[Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444-o2445.],d[Khawar Rauf, M., Badshah, A., Bolte, M. & Zaeem Akhtar, M. (2006d). Acta Cryst. E62, o1849-o1850.]). For reference bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15ClN2OS

  • Mr = 318.81

  • Triclinic, [P \overline 1]

  • a = 8.1315 (9) Å

  • b = 9.3906 (12) Å

  • c = 10.5310 (12) Å

  • α = 93.296 (8)°

  • β = 92.623 (8)°

  • γ = 102.579 (9)°

  • V = 782.14 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 173 (2) K

  • 0.46 × 0.42 × 0.41 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.846, Tmax = 0.861

  • 8257 measured reflections

  • 3066 independent reflections

  • 2846 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.04

  • 3066 reflections

  • 201 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 (2) 1.99 (2) 2.6840 (16) 137.7 (17)
N1—H1⋯S1i 0.836 (19) 2.636 (19) 3.4376 (13) 161.2 (15)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The background to this study has been set out in our previous work on the structural chemistry of N,N'-disubstituted thioureas (Khawar Rauf et al., 2006a,b,c,d). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles, see the table of selected geometric parameters, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006a).The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar. The dihedral angle between the aromatic rings is 50.18 (5)°. An intramolecular N—H···O hydrogen bond is present (Table 2), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2006d). Intermolecular N—H···S hydrogen bonds link the molecules to form centrosymmetric dimers.

Related literature top

For related compounds, see: Khawar Rauf et al. (2006a,b,c,d). For standard bond-length data, see: Allen (2002)

Experimental top

Freshly prepared 3-chlorobenzoyl isothiocyanate (2.0 g, 10 mmol) was stirred in acetone (40 ml) for 20 min. Neat 2,3-dimethylaniline (1.62 g, 10 mmol) was then added and the resulting mixture was stirred for 1.5 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol–1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall yield of 90%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2Ueq(C) or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), respectively, for aromatic and methyl C atoms. The H atoms bonded to N were freely refined.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram. Hydrogen bonds are shown as dashed lines.
1-(3-chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea top
Crystal data top
C16H15ClN2OSZ = 2
Mr = 318.81F(000) = 332
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1315 (9) ÅCell parameters from 7706 reflections
b = 9.3906 (12) Åθ = 3.7–26.1°
c = 10.5310 (12) ŵ = 0.38 mm1
α = 93.296 (8)°T = 173 K
β = 92.623 (8)°Block, colourless
γ = 102.579 (9)°0.46 × 0.42 × 0.41 mm
V = 782.14 (16) Å3
Data collection top
Stoe IPDS II two-circle
diffractometer
3066 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.1°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
h = 1010
Tmin = 0.846, Tmax = 0.861k = 1011
8257 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.041P)2 + 0.3782P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3066 reflectionsΔρmax = 0.27 e Å3
201 parametersΔρmin = 0.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (5)
Crystal data top
C16H15ClN2OSγ = 102.579 (9)°
Mr = 318.81V = 782.14 (16) Å3
Triclinic, P1Z = 2
a = 8.1315 (9) ÅMo Kα radiation
b = 9.3906 (12) ŵ = 0.38 mm1
c = 10.5310 (12) ÅT = 173 K
α = 93.296 (8)°0.46 × 0.42 × 0.41 mm
β = 92.623 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
3066 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2003; Blessing, 1995)
2846 reflections with I > 2σ(I)
Tmin = 0.846, Tmax = 0.861Rint = 0.037
8257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3066 reflectionsΔρmin = 0.33 e Å3
201 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.23509 (5)0.60717 (4)0.59551 (4)0.02881 (14)
Cl10.24623 (5)0.05881 (5)0.30214 (4)0.03438 (14)
O10.01441 (13)0.25159 (11)0.84778 (9)0.0258 (2)
N10.03004 (15)0.36655 (13)0.66166 (11)0.0201 (3)
H10.014 (2)0.3701 (19)0.5889 (18)0.025 (4)*
N20.24161 (15)0.47809 (13)0.81460 (11)0.0215 (3)
H20.192 (2)0.412 (2)0.8612 (19)0.034 (5)*
C10.04406 (17)0.25179 (15)0.73206 (13)0.0192 (3)
C20.16893 (17)0.48027 (14)0.69839 (13)0.0190 (3)
C110.16148 (16)0.12650 (14)0.65810 (13)0.0190 (3)
C120.15027 (17)0.09819 (15)0.52694 (13)0.0203 (3)
H120.07030.16120.48090.024*
C130.25894 (18)0.02426 (15)0.46557 (14)0.0232 (3)
C140.37636 (19)0.11864 (16)0.53128 (16)0.0280 (3)
H140.44950.20150.48770.034*
C150.38527 (18)0.09009 (16)0.66142 (16)0.0280 (3)
H150.46500.15380.70710.034*
C160.27787 (18)0.03152 (16)0.72518 (14)0.0238 (3)
H160.28370.04990.81430.029*
C210.39206 (17)0.58278 (15)0.86417 (13)0.0194 (3)
C220.55031 (18)0.56849 (15)0.82648 (13)0.0213 (3)
C230.69413 (18)0.67134 (16)0.88045 (14)0.0240 (3)
C240.67324 (19)0.78059 (16)0.96980 (14)0.0255 (3)
H240.77010.84861.00660.031*
C250.5146 (2)0.79247 (17)1.00630 (14)0.0280 (3)
H250.50340.86791.06710.034*
C260.37181 (18)0.69272 (16)0.95296 (14)0.0243 (3)
H260.26240.69960.97680.029*
C270.5701 (2)0.44874 (18)0.73006 (16)0.0325 (4)
H27A0.46500.37360.71990.049*
H27B0.66250.40490.75980.049*
H27C0.59560.49010.64800.049*
C280.8687 (2)0.6643 (2)0.84115 (18)0.0412 (4)
H28A0.95130.74790.88230.062*
H28B0.87200.66710.74840.062*
H28C0.89610.57320.86720.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0257 (2)0.0279 (2)0.0257 (2)0.00979 (15)0.00909 (14)0.01144 (15)
Cl10.0333 (2)0.0398 (2)0.0276 (2)0.00868 (17)0.00649 (16)0.01303 (16)
O10.0274 (5)0.0271 (5)0.0184 (5)0.0040 (4)0.0013 (4)0.0031 (4)
N10.0201 (6)0.0193 (6)0.0172 (6)0.0028 (4)0.0054 (5)0.0021 (4)
N20.0202 (6)0.0212 (6)0.0188 (6)0.0040 (5)0.0040 (5)0.0030 (5)
C10.0175 (6)0.0190 (6)0.0199 (7)0.0015 (5)0.0001 (5)0.0016 (5)
C20.0171 (6)0.0180 (6)0.0201 (7)0.0008 (5)0.0019 (5)0.0007 (5)
C110.0159 (6)0.0166 (6)0.0234 (7)0.0020 (5)0.0026 (5)0.0019 (5)
C120.0179 (6)0.0182 (6)0.0238 (7)0.0026 (5)0.0021 (5)0.0008 (5)
C130.0227 (7)0.0216 (7)0.0253 (7)0.0078 (5)0.0061 (6)0.0046 (6)
C140.0222 (7)0.0184 (7)0.0395 (9)0.0007 (5)0.0090 (6)0.0025 (6)
C150.0215 (7)0.0211 (7)0.0384 (9)0.0023 (6)0.0023 (6)0.0078 (6)
C160.0215 (7)0.0226 (7)0.0255 (7)0.0009 (5)0.0006 (6)0.0046 (6)
C210.0206 (7)0.0189 (6)0.0163 (6)0.0002 (5)0.0050 (5)0.0023 (5)
C220.0236 (7)0.0211 (7)0.0184 (7)0.0041 (5)0.0029 (5)0.0011 (5)
C230.0204 (7)0.0285 (7)0.0220 (7)0.0032 (6)0.0033 (5)0.0038 (6)
C240.0235 (7)0.0249 (7)0.0240 (7)0.0014 (6)0.0084 (6)0.0014 (6)
C250.0321 (8)0.0252 (7)0.0245 (7)0.0056 (6)0.0055 (6)0.0073 (6)
C260.0206 (7)0.0286 (7)0.0229 (7)0.0053 (6)0.0018 (5)0.0021 (6)
C270.0316 (8)0.0343 (8)0.0311 (8)0.0092 (7)0.0010 (6)0.0083 (7)
C280.0225 (8)0.0568 (11)0.0410 (10)0.0047 (7)0.0002 (7)0.0057 (8)
Geometric parameters (Å, º) top
S1—C21.6751 (14)C16—H160.9500
Cl1—C131.7450 (15)C21—C261.394 (2)
O1—C11.2315 (17)C21—C221.395 (2)
N1—C11.3871 (18)C22—C231.417 (2)
N1—C21.3974 (17)C22—C271.511 (2)
N1—H10.836 (19)C23—C241.395 (2)
N2—C21.3377 (18)C23—C281.511 (2)
N2—C211.4472 (17)C24—C251.388 (2)
N2—H20.86 (2)C24—H240.9500
C1—C111.4966 (18)C25—C261.395 (2)
C11—C161.3986 (19)C25—H250.9500
C11—C121.402 (2)C26—H260.9500
C12—C131.3930 (19)C27—H27A0.9800
C12—H120.9500C27—H27B0.9800
C13—C141.392 (2)C27—H27C0.9800
C14—C151.390 (2)C28—H28A0.9800
C14—H140.9500C28—H28B0.9800
C15—C161.393 (2)C28—H28C0.9800
C15—H150.9500
C1—N1—C2127.82 (12)C26—C21—C22122.41 (13)
C1—N1—H1117.0 (12)C26—C21—N2117.43 (13)
C2—N1—H1115.2 (12)C22—C21—N2120.12 (12)
C2—N2—C21123.54 (12)C21—C22—C23117.98 (13)
C2—N2—H2116.1 (13)C21—C22—C27121.75 (13)
C21—N2—H2120.3 (13)C23—C22—C27120.27 (13)
O1—C1—N1122.49 (12)C24—C23—C22119.38 (13)
O1—C1—C11121.81 (12)C24—C23—C28120.03 (14)
N1—C1—C11115.70 (12)C22—C23—C28120.59 (14)
N2—C2—N1116.65 (12)C25—C24—C23121.69 (13)
N2—C2—S1124.50 (10)C25—C24—H24119.2
N1—C2—S1118.84 (10)C23—C24—H24119.2
C16—C11—C12120.14 (12)C24—C25—C26119.50 (14)
C16—C11—C1117.91 (12)C24—C25—H25120.2
C12—C11—C1121.84 (12)C26—C25—H25120.2
C13—C12—C11118.60 (13)C21—C26—C25119.04 (13)
C13—C12—H12120.7C21—C26—H26120.5
C11—C12—H12120.7C25—C26—H26120.5
C14—C13—C12121.68 (14)C22—C27—H27A109.5
C14—C13—Cl1119.67 (11)C22—C27—H27B109.5
C12—C13—Cl1118.64 (12)H27A—C27—H27B109.5
C15—C14—C13119.17 (13)C22—C27—H27C109.5
C15—C14—H14120.4H27A—C27—H27C109.5
C13—C14—H14120.4H27B—C27—H27C109.5
C14—C15—C16120.31 (14)C23—C28—H28A109.5
C14—C15—H15119.8C23—C28—H28B109.5
C16—C15—H15119.8H28A—C28—H28B109.5
C15—C16—C11120.08 (14)C23—C28—H28C109.5
C15—C16—H16120.0H28A—C28—H28C109.5
C11—C16—H16120.0H28B—C28—H28C109.5
C2—N1—C1—O114.4 (2)C12—C11—C16—C151.2 (2)
C2—N1—C1—C11164.92 (13)C1—C11—C16—C15177.41 (13)
C21—N2—C2—N1176.32 (12)C2—N2—C21—C26103.83 (16)
C21—N2—C2—S12.7 (2)C2—N2—C21—C2278.45 (18)
C1—N1—C2—N21.0 (2)C26—C21—C22—C230.6 (2)
C1—N1—C2—S1179.91 (11)N2—C21—C22—C23178.24 (12)
O1—C1—C11—C1620.3 (2)C26—C21—C22—C27179.96 (14)
N1—C1—C11—C16160.43 (12)N2—C21—C22—C272.4 (2)
O1—C1—C11—C12155.86 (13)C21—C22—C23—C241.0 (2)
N1—C1—C11—C1223.43 (19)C27—C22—C23—C24179.67 (14)
C16—C11—C12—C131.1 (2)C21—C22—C23—C28178.42 (14)
C1—C11—C12—C13177.14 (12)C27—C22—C23—C280.9 (2)
C11—C12—C13—C140.5 (2)C22—C23—C24—C250.8 (2)
C11—C12—C13—Cl1179.51 (10)C28—C23—C24—C25178.63 (15)
C12—C13—C14—C150.1 (2)C23—C24—C25—C260.2 (2)
Cl1—C13—C14—C15179.96 (11)C22—C21—C26—C250.0 (2)
C13—C14—C15—C160.0 (2)N2—C21—C26—C25177.71 (13)
C14—C15—C16—C110.7 (2)C24—C25—C26—C210.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)1.99 (2)2.6840 (16)137.7 (17)
N1—H1···S1i0.836 (19)2.636 (19)3.4376 (13)161.2 (15)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15ClN2OS
Mr318.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.1315 (9), 9.3906 (12), 10.5310 (12)
α, β, γ (°)93.296 (8), 92.623 (8), 102.579 (9)
V3)782.14 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.46 × 0.42 × 0.41
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2003; Blessing, 1995)
Tmin, Tmax0.846, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
8257, 3066, 2846
Rint0.037
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.04
No. of reflections3066
No. of parameters201
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.33

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)1.99 (2)2.6840 (16)137.7 (17)
N1—H1···S1i0.836 (19)2.636 (19)3.4376 (13)161.2 (15)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

MKR is grateful to the HEC, Pakistan, for financial support for a PhD programme under scholarship No. ILC-0363104.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Badshah, A., Bolte, M. & Zaeem Akhtar, M. (2006d). Acta Cryst. E62, o1849–o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds