organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl N-(4-chloro­phenyl)succinamate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 January 2009; accepted 22 January 2009; online 28 January 2009)

In the structure of the title compound {systematic name: methyl 3-[(4-chloro­phen­yl)amino­carbon­yl]propionate}, C11H12ClNO3, the conformations of the N—H and C=O bonds in the amide fragment are trans to each other and the conformations of the amide O atom and the carbonyl O atom of the ester fragment are also trans to the H atoms attached to the adjacent C atoms. Mol­ecules are linked into a centrosymmetric R22(14) dimer by simple N—H⋯O inter­actions. Furthermore, a short intra­molecular C—H⋯O contact may stabilize the conformation adopted by the mol­ecule in the crystal.

Related literature

For background, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. A, 62, 91-100.]); Gowda, Foro & Fuess (2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.]); Gowda, Foro, Sowmya et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o2247.]); Jones et al. (1990[Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78-81.]); Wan et al. (2006[Wan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. & Shi, Z. (2006). J. Am. Chem. Soc. 128, 7416-7417.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClNO3

  • Mr = 241.67

  • Orthorhombic, P b c a

  • a = 14.190 (1) Å

  • b = 5.6370 (5) Å

  • c = 28.139 (3) Å

  • V = 2250.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 299 (2) K

  • 0.50 × 0.48 × 0.44 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.852, Tmax = 0.868

  • 10377 measured reflections

  • 2272 independent reflections

  • 1649 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.154

  • S = 1.19

  • 2272 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.94 (3) 2.22 (3) 2.833 (4) 121 (3)
N1—H1N⋯O2i 0.82 (3) 2.22 (3) 3.020 (3) 163 (3)
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Amides are of interest as conjugation between the nitrogen lone pair electrons and the carbonyl pi-bond results in distinct physical and chemical properties. The amide moiety is also an important constituent of many biologically significant compounds. Thus, the structural studies of amides are of interest (see Gowda et al., 2007 and references therein; Gowda, Foro & Fuess, 2008; Gowda, Foro, Sowmya et al., 2008; Jones et al., 1990; Wan et al., 2006 as representative examples). As a part of studying the effect of ring and side-chain substitutions on the solid state geometry of this class of compounds, we report herein the crystal structure of N-(4-chlorophenyl)methylsuccinamate (N4CPMSA). The conformations of N—H and C=O bonds in the amide fragment are trans to each other and the conformations of the amide oxygen and the carbonyl oxygen of the ester segment are also trans to the H-atoms attached to the adjacent carbons (Fig. 1). The succinamido group and the benzene ring lie in the same plane with the Rms deviation of fitted atoms equal to 0.0720 Å. The molecules are linked into centrosymmetric R~2~^2^(14) dimer by simple N-H···O interactions (Bernstein et al., 1995). Furthermore, a short intramolecular C-H···.O contact may stabilize the conformation adopted by the molecule in the solid state (Table 1) is shown in Fig.2.

Related literature top

For background, see: Gowda et al. (2007); Gowda, Foro & Fuess (2008); Gowda, Foro, Sowmya et al. (2008); Jones et al. (1990); Wan et al. (2006). For related literature, see: Bernstein et al. (1995).

Experimental top

The solution of succinic anhydride (0.025 mole) in toluene (25 cc) was treated dropwise with the solution of 4-chloroaniline (0.025 mole) in toluene (20 cc) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 4-chloroaniline. The resultant solid N-(4-chlorophenyl)-succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The slow crystallization of N-(4-chlorophenyl)-succinamic acid in hot methanol resulted in N-(4-chlorophenyl)-methylsuccinamate. It was further recrystallized to constant melting point from methanol. The purity of the compound was checked by elemental analysis and characterized by recording its infrared and NMR spectra. The single crystals used in X-ray diffraction studies were grown in methanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms of the methyl group were positioned with idealized geometry using a riding model with C—H = 0.96 Å. The other H atoms were located in difference map, and their positional parameters were refined freely [N—H = 0.82 (3) Å, C—H = 0.90 (3)–1.01 (3) Å]. All H atoms were refined with isotropic displacement parameters with Uiso(H) = 1.2 Ueq(C-aromatic,N) or 1.5 Ueq (C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A fragment of the structure of (I) , viewed along the b axis , dashed lines. shown N-H···O and C-H···O interactions
Methyl 3-[(4-chlorophenyl)aminocarbonyl]propionate top
Crystal data top
C11H12ClNO3F(000) = 1008
Mr = 241.67Dx = 1.426 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3422 reflections
a = 14.190 (1) Åθ = 2.6–28.0°
b = 5.6370 (5) ŵ = 0.33 mm1
c = 28.139 (3) ÅT = 299 K
V = 2250.8 (4) Å3Prism, colourless
Z = 80.50 × 0.48 × 0.44 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2272 independent reflections
Radiation source: fine-focus sealed tube1649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 1717
Tmin = 0.852, Tmax = 0.868k = 77
10377 measured reflectionsl = 3335
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0501P)2 + 2.2683P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2272 reflectionsΔρmax = 0.28 e Å3
173 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0109 (13)
Crystal data top
C11H12ClNO3V = 2250.8 (4) Å3
Mr = 241.67Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.190 (1) ŵ = 0.33 mm1
b = 5.6370 (5) ÅT = 299 K
c = 28.139 (3) Å0.50 × 0.48 × 0.44 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2272 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1649 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.868Rint = 0.043
10377 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.28 e Å3
2272 reflectionsΔρmin = 0.27 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.63844 (7)1.51417 (17)0.23361 (3)0.0671 (3)
O10.67752 (18)1.1013 (4)0.00684 (8)0.0659 (7)
O20.56516 (16)0.4234 (4)0.09121 (8)0.0591 (6)
O30.66393 (16)0.6160 (5)0.13895 (8)0.0635 (7)
N10.58842 (17)0.9188 (5)0.06256 (8)0.0436 (6)
H1N0.554 (2)0.804 (6)0.0675 (12)0.052*
C10.60124 (18)1.0708 (5)0.10151 (9)0.0384 (6)
C20.5627 (2)1.0015 (6)0.14469 (11)0.0485 (7)
H20.525 (2)0.866 (6)0.1470 (11)0.058*
C30.5731 (2)1.1346 (6)0.18498 (11)0.0526 (8)
H30.546 (2)1.083 (6)0.2168 (12)0.063*
C40.6234 (2)1.3447 (5)0.18267 (10)0.0444 (7)
C50.6611 (2)1.4180 (5)0.14030 (11)0.0439 (7)
H50.693 (2)1.555 (6)0.1384 (11)0.053*
C60.65037 (19)1.2848 (5)0.09955 (11)0.0423 (6)
H60.677 (2)1.336 (6)0.0706 (11)0.051*
C70.62722 (19)0.9364 (5)0.01857 (10)0.0399 (6)
C80.6017 (2)0.7370 (5)0.01474 (10)0.0418 (7)
H8A0.532 (2)0.724 (5)0.0177 (10)0.050*
H8B0.621 (2)0.584 (6)0.0004 (11)0.050*
C90.6451 (2)0.7706 (6)0.06280 (10)0.0448 (7)
H9A0.712 (2)0.773 (6)0.0601 (11)0.054*
H9B0.628 (2)0.926 (6)0.0768 (11)0.054*
C100.61912 (19)0.5841 (5)0.09780 (10)0.0417 (6)
C110.6445 (3)0.4460 (7)0.17585 (12)0.0674 (10)
H11A0.65410.28850.16380.081*
H11B0.68610.47310.20220.081*
H11C0.58040.46290.18620.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0874 (7)0.0637 (6)0.0502 (5)0.0054 (5)0.0006 (4)0.0139 (4)
O10.0876 (17)0.0558 (13)0.0542 (13)0.0273 (13)0.0239 (12)0.0081 (11)
O20.0642 (14)0.0613 (14)0.0520 (13)0.0215 (12)0.0051 (10)0.0043 (11)
O30.0656 (14)0.0797 (16)0.0453 (12)0.0206 (13)0.0149 (10)0.0109 (12)
N10.0475 (13)0.0430 (14)0.0403 (13)0.0096 (11)0.0041 (10)0.0028 (11)
C10.0374 (13)0.0383 (14)0.0396 (14)0.0019 (11)0.0017 (11)0.0051 (11)
C20.0546 (17)0.0442 (16)0.0467 (16)0.0106 (14)0.0081 (13)0.0033 (14)
C30.0629 (19)0.0551 (19)0.0398 (15)0.0065 (15)0.0114 (14)0.0034 (14)
C40.0473 (15)0.0424 (16)0.0436 (15)0.0063 (13)0.0007 (12)0.0023 (12)
C50.0423 (15)0.0366 (15)0.0527 (17)0.0003 (12)0.0028 (13)0.0003 (13)
C60.0444 (14)0.0382 (15)0.0442 (15)0.0025 (12)0.0031 (12)0.0071 (12)
C70.0392 (14)0.0404 (15)0.0401 (14)0.0030 (12)0.0031 (11)0.0032 (12)
C80.0409 (14)0.0426 (16)0.0419 (15)0.0018 (13)0.0015 (12)0.0014 (12)
C90.0440 (15)0.0489 (17)0.0415 (15)0.0067 (13)0.0010 (12)0.0011 (13)
C100.0386 (14)0.0468 (16)0.0396 (14)0.0019 (13)0.0003 (11)0.0000 (12)
C110.068 (2)0.085 (3)0.0490 (18)0.007 (2)0.0084 (16)0.0178 (18)
Geometric parameters (Å, º) top
Cl1—C41.736 (3)C4—C51.371 (4)
O1—C71.217 (3)C5—C61.379 (4)
O2—C101.200 (3)C5—H50.90 (3)
O3—C101.333 (3)C6—H60.94 (3)
O3—C111.440 (4)C7—C81.507 (4)
N1—C71.358 (4)C8—C91.498 (4)
N1—C11.403 (4)C8—H8A1.00 (3)
N1—H1N0.82 (3)C8—H8B0.99 (3)
C1—C21.388 (4)C9—C101.487 (4)
C1—C61.395 (4)C9—H9A0.95 (3)
C2—C31.367 (4)C9—H9B0.99 (3)
C2—H20.94 (3)C11—H11A0.9600
C3—C41.384 (4)C11—H11B0.9600
C3—H31.01 (3)C11—H11C0.9600
C10—O3—C11116.4 (3)O1—C7—C8122.8 (3)
C7—N1—C1127.9 (2)N1—C7—C8114.5 (2)
C7—N1—H1N117 (2)C9—C8—C7111.6 (2)
C1—N1—H1N115 (2)C9—C8—H8A110.0 (17)
C2—C1—C6118.3 (3)C7—C8—H8A110.2 (17)
C2—C1—N1117.4 (3)C9—C8—H8B111.4 (18)
C6—C1—N1124.2 (2)C7—C8—H8B109.3 (18)
C3—C2—C1121.9 (3)H8A—C8—H8B104 (2)
C3—C2—H2117 (2)C10—C9—C8114.0 (2)
C1—C2—H2121 (2)C10—C9—H9A108.0 (19)
C2—C3—C4119.1 (3)C8—C9—H9A109.9 (19)
C2—C3—H3122.3 (19)C10—C9—H9B107.4 (19)
C4—C3—H3118.6 (19)C8—C9—H9B111.6 (19)
C5—C4—C3120.0 (3)H9A—C9—H9B106 (3)
C5—C4—Cl1120.3 (2)O2—C10—O3122.7 (3)
C3—C4—Cl1119.7 (2)O2—C10—C9126.1 (3)
C4—C5—C6121.0 (3)O3—C10—C9111.2 (2)
C4—C5—H5121 (2)O3—C11—H11A109.5
C6—C5—H5118 (2)O3—C11—H11B109.5
C5—C6—C1119.6 (3)H11A—C11—H11B109.5
C5—C6—H6120.5 (19)O3—C11—H11C109.5
C1—C6—H6119.9 (19)H11A—C11—H11C109.5
O1—C7—N1122.7 (3)H11B—C11—H11C109.5
C7—N1—C1—C2172.7 (3)N1—C1—C6—C5178.2 (3)
C7—N1—C1—C66.9 (4)C1—N1—C7—O13.2 (5)
C6—C1—C2—C31.1 (5)C1—N1—C7—C8177.7 (3)
N1—C1—C2—C3178.6 (3)O1—C7—C8—C90.4 (4)
C1—C2—C3—C40.0 (5)N1—C7—C8—C9178.7 (3)
C2—C3—C4—C50.7 (5)C7—C8—C9—C10177.6 (2)
C2—C3—C4—Cl1179.2 (3)C11—O3—C10—O20.1 (4)
C3—C4—C5—C60.4 (4)C11—O3—C10—C9180.0 (3)
Cl1—C4—C5—C6179.6 (2)C8—C9—C10—O23.6 (4)
C4—C5—C6—C10.7 (4)C8—C9—C10—O3176.5 (3)
C2—C1—C6—C51.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.94 (3)2.22 (3)2.833 (4)121 (3)
N1—H1N···O2i0.82 (3)2.22 (3)3.020 (3)163 (3)
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H12ClNO3
Mr241.67
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)14.190 (1), 5.6370 (5), 28.139 (3)
V3)2250.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.50 × 0.48 × 0.44
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.852, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
10377, 2272, 1649
Rint0.043
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.154, 1.19
No. of reflections2272
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.94 (3)2.22 (3)2.833 (4)121 (3)
N1—H1N···O2i0.82 (3)2.22 (3)3.020 (3)163 (3)
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o828.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o2247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. A, 62, 91–100.  CAS Google Scholar
First citationJones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, X., Ma, Z., Li, B., Zhang, K., Cao, S., Zhang, S. & Shi, Z. (2006). J. Am. Chem. Soc. 128, 7416–7417.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds