organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o267-o268

N-[4-Acetyl-5-methyl-5-(2-p-tolyl­prop­yl)-4,5-di­hydro-1,3,4-thia­diazol-2-yl]acetamide

aLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, bInstituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano, 119 28002 Madrid, Spain, cLaboratoire des Sciences des Matériaux, Département de Physique, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and dLaboratoire de Chimie Biomoléculaires, Substances Naturelles et Réactivité, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 16 December 2008; accepted 4 January 2009; online 10 January 2009)

The title heterocyclic compound, C17H23N3O2S, was synthesized from 4-(4-methyl­cyclo­hex-3-en­yl)pent-3-en-2-one, which was isolated from Cedrus atlantica essential oil. The thia­diazole ring adopts a flattened envelope conformation, with the flap sp3-hybridized C atom lying 0.259 (1) Å out of the plane of the other four atoms. The screw-related mol­ecules are linked into chains along the b axis by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For 1,3,4-thia­diazole derivatives and their biological activity, see: Beatriz et al. (2002[Beatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, X, 14-23.]); Loughzail et al. (2009[Loughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.]); Mazoir et al. (2008[Mazoir, N., Benharref, A., Bailén, M., Reina, M. & González-Coloma, A. (2008). Phytochemistry, 69, 1328-1338.]); Mohammed et al. (2008[Mohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610-o611.]); Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Sakthivel et al. (2008[Sakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.]); Tehranchian et al. (2005[Tehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023-1025.]); Wang et al. (1999[Wang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.], 2004[Wang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606-1609.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H23N3O2S

  • Mr = 333.44

  • Monoclinic, P 21 /n

  • a = 9.3984 (2) Å

  • b = 11.0510 (2) Å

  • c = 16.6045 (3) Å

  • β = 90.442 (10)°

  • V = 1724.52 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.5 × 0.4 × 0.3 mm

Data collection
  • Bruker X8 APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 52162 measured reflections

  • 8286 independent reflections

  • 7182 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.108

  • S = 1.03

  • 8286 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H4⋯O2i 0.89 (1) 1.96 (1) 2.8391 (7) 169 (1)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1,3,4-Thiadiazole derivatives (Sakthivel et al., 2008) represent an interesting class of compounds possessing diverses activities: biological (Nakagawa et al., 1996), fungicidal (Wang et al., 1999, 2004) and bactericidal properties (Tehranchian et al., 2005). The work of our research group focused on the phytochemical study of Moroccan plants and aimed to find out new compounds, which could be used as precursors or intermediates for the synthesis of high added value specimens (Mazoir et al., 2008; Loughzail et al.,2009). In this way, we have investigated native Cedrus species rich on sesquiterpene derivatives. Thus a new compound was obtained through chemical modification of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one, which was isolated from Cedrus Atlantica essential oil. The aromatization of the above compound followed by condensation with thiosemicarbazide (Beatriz et al., 2002; Mohammed et al., 2008) ending with treatment of acetic anhydride in the presence of pyridine yielded a diasterioisomers in high stereoselectivity.

The molecular structure of the title compound is shown in Fig. 1. The thiadiazole ring adopts a flattened envelop conformation as indicated by Cremer & Pople (1975) puckering parameters Q = 0.1578 (6) Å and ϕ = 148.3 (2)°. Atom C5 deviates from the mean plane through other four atoms in the ring by 0.259 (1) Å.

In the crystal structure, molecules are linked into chains (Fig. 2) running along the b axis by intermolecular N—H···O hydrogen bonds (Table 1) involving the carbonyl and the acetamide groups.

Related literature top

For 1,3,4-thiadiazole derivatives and their biological activity, see: Beatriz et al. (2002); Loughzail et al. (2009); Mazoir et al. (2008); Mohammed et al. (2008); Nakagawa et al. (1996); Sakthivel et al. (2008); Tehranchian et al. (2005); Wang et al. (1999, 2004). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A solution of 4-(4-methylcyclohex-3-enyl)pent-3-en-2-one (0.5 g, 2.8 mmol) and Pd/C (10%) was heated at 423 K for 12 h. The product obtained was treated with equimolecular quantity of thiosemicarbazide and several drops of HCl (cc) were added. The reaction mixture was heated at reflux in ethanol for 6 h and then evaporated under reduced pressure and the residue obtained was purified on silica gel column using hexane-ethyl acetate (96:4) as an eluent. 0.25 mmol of the thiosemicarbazone obtained was dissolved in 3 ml of pyridine and 3 ml of acetic anhydride. The mixture was heated on a water bath for 1.5 h. The resulting residue was concentrated in vacuo and chromatographied on silica gel column with hexane-ethyl acetate (92:8) as an eluent. Suitable crystals were obtained by evaporation of ethyl acetate solution at 277 K.

Refinement top

Atoms H4 and H7 were located in a difference map and refined freely (C7—H7 = 0.974 (11) Å and N1—H4 = 0.889 (13) Å). The remaining H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(aromatic, methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The highest residual density peak is located 0.62 Å from atom C2 and the deepest hole is located 0.39 Å from atom H70'.

Computing details top

Data collection: APEX-W2K-NT (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2005); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing N—H···O hydrogen-bonded (dashed lines) chain running along the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
N-[4-Acetyl-5-methyl-5-(2-p-tolylpropyl)-4,5-dihydro-1,3,4- thiadiazol-2-yl]acetamide top
Crystal data top
C17H23N3O2SF(000) = 712
Mr = 333.44Dx = 1.284 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 31976 reflections
a = 9.3984 (2) Åθ = 2.2–36.5°
b = 11.0510 (2) ŵ = 0.20 mm1
c = 16.6045 (3) ÅT = 298 K
β = 90.442 (10)°Prism, colourless
V = 1724.52 (6) Å30.5 × 0.4 × 0.3 mm
Z = 4
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
7182 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 36.8°, θmin = 2.2°
ϕ and ω scansh = 1415
52162 measured reflectionsk = 1817
8286 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2773P]
where P = (Fo2 + 2Fc2)/3
8286 reflections(Δ/σ)max = 0.002
221 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C17H23N3O2SV = 1724.52 (6) Å3
Mr = 333.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3984 (2) ŵ = 0.20 mm1
b = 11.0510 (2) ÅT = 298 K
c = 16.6045 (3) Å0.5 × 0.4 × 0.3 mm
β = 90.442 (10)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
7182 reflections with I > 2σ(I)
52162 measured reflectionsRint = 0.019
8286 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.51 e Å3
8286 reflectionsΔρmin = 0.19 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1'0.18648 (9)0.69929 (8)0.22865 (5)0.03405 (16)
H1'0.26310.74230.24930.041*
C2'0.12028 (8)0.74007 (7)0.15872 (5)0.02883 (13)
H2'0.15530.80870.13290.035*
C20.40705 (7)0.72005 (6)0.13520 (4)0.02074 (10)
C3'0.00246 (7)0.68003 (6)0.12659 (4)0.02299 (11)
C30.58917 (7)0.58558 (7)0.08145 (4)0.02531 (12)
C40.67040 (8)0.47195 (8)0.09881 (5)0.03082 (14)
H400.63970.40940.06250.046*
H410.65340.44710.15330.046*
H420.77020.48650.09170.046*
C4'0.04426 (8)0.57608 (7)0.16569 (5)0.02818 (13)
H4'0.12210.53400.14580.034*
C50.24444 (7)0.89236 (6)0.09425 (4)0.02261 (11)
C5'0.02462 (10)0.53384 (8)0.23496 (5)0.03469 (17)
H5'0.00730.46310.25950.042*
C60.10835 (8)0.85717 (6)0.04946 (4)0.02444 (12)
H610.11720.88340.00600.029*
H620.03020.90210.07280.029*
C6'0.13955 (10)0.59549 (9)0.26777 (5)0.03553 (17)
C7'0.21196 (14)0.55330 (13)0.34392 (6)0.0557 (3)
H70'0.16610.48130.36340.083*
H71'0.31030.53630.33250.083*
H72'0.20540.61550.38410.083*
C70.06784 (7)0.72237 (6)0.04914 (4)0.02407 (11)
C80.02971 (10)0.69513 (9)0.02232 (5)0.03593 (17)
H800.01640.71870.07130.054*
H810.11690.73950.01680.054*
H820.05010.61000.02390.054*
C90.27064 (10)1.02844 (7)0.08864 (5)0.03188 (15)
H900.35331.04930.12000.048*
H910.18951.07110.10900.048*
H920.28551.05050.03340.048*
C410.15568 (7)0.88983 (6)0.23768 (4)0.02220 (11)
C420.16402 (9)0.82781 (7)0.31792 (4)0.02797 (13)
H4200.10940.75440.31610.042*
H4210.12650.88020.35870.042*
H4220.26150.80910.33040.042*
N10.49426 (6)0.61997 (5)0.14026 (3)0.02274 (10)
N30.32596 (6)0.74595 (5)0.19539 (3)0.02162 (10)
N40.24397 (6)0.84788 (5)0.17882 (3)0.02167 (10)
O10.60479 (7)0.64374 (7)0.01970 (4)0.03731 (14)
O20.07229 (6)0.97409 (5)0.22442 (3)0.02734 (10)
S10.400452 (18)0.813333 (16)0.050251 (10)0.02473 (5)
H40.4838 (13)0.5774 (12)0.1853 (8)0.036 (3)*
H70.1540 (12)0.6750 (10)0.0411 (7)0.028 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1'0.0346 (4)0.0368 (4)0.0309 (3)0.0069 (3)0.0063 (3)0.0080 (3)
C2'0.0302 (3)0.0267 (3)0.0297 (3)0.0019 (2)0.0030 (2)0.0024 (2)
C20.0225 (2)0.0212 (2)0.0185 (2)0.00085 (19)0.00014 (18)0.00030 (19)
C3'0.0255 (3)0.0214 (3)0.0220 (3)0.0002 (2)0.0027 (2)0.00210 (19)
C30.0203 (2)0.0334 (3)0.0222 (3)0.0008 (2)0.00024 (19)0.0032 (2)
C40.0255 (3)0.0331 (3)0.0338 (3)0.0052 (2)0.0005 (2)0.0081 (3)
C4'0.0296 (3)0.0246 (3)0.0303 (3)0.0003 (2)0.0072 (2)0.0011 (2)
C50.0293 (3)0.0197 (2)0.0188 (2)0.0009 (2)0.0005 (2)0.00177 (19)
C5'0.0396 (4)0.0325 (4)0.0318 (3)0.0098 (3)0.0116 (3)0.0077 (3)
C60.0289 (3)0.0245 (3)0.0199 (2)0.0025 (2)0.0023 (2)0.0024 (2)
C6'0.0407 (4)0.0420 (4)0.0238 (3)0.0185 (3)0.0029 (3)0.0004 (3)
C7'0.0633 (7)0.0724 (8)0.0313 (4)0.0341 (6)0.0034 (4)0.0054 (5)
C70.0264 (3)0.0251 (3)0.0207 (2)0.0018 (2)0.0016 (2)0.0032 (2)
C80.0402 (4)0.0437 (4)0.0238 (3)0.0051 (3)0.0066 (3)0.0053 (3)
C90.0445 (4)0.0202 (3)0.0310 (3)0.0016 (3)0.0006 (3)0.0036 (2)
C410.0276 (3)0.0205 (2)0.0185 (2)0.0008 (2)0.00094 (19)0.00301 (19)
C420.0367 (3)0.0281 (3)0.0191 (3)0.0049 (3)0.0014 (2)0.0006 (2)
N10.0240 (2)0.0233 (2)0.0209 (2)0.00241 (18)0.00268 (17)0.00121 (18)
N30.0262 (2)0.0202 (2)0.0184 (2)0.00288 (18)0.00029 (17)0.00064 (17)
N40.0281 (2)0.0199 (2)0.0171 (2)0.00304 (18)0.00031 (17)0.00020 (16)
O10.0321 (3)0.0550 (4)0.0249 (2)0.0069 (3)0.0068 (2)0.0066 (2)
O20.0344 (3)0.0233 (2)0.0244 (2)0.00714 (18)0.00082 (18)0.00255 (17)
S10.02737 (8)0.02713 (9)0.01972 (8)0.00035 (5)0.00253 (5)0.00433 (5)
Geometric parameters (Å, º) top
C1'—C6'1.3886 (14)C6—C71.5375 (10)
C1'—C2'1.3963 (12)C6—H610.97
C1'—H1'0.93C6—H620.97
C2'—C3'1.4001 (10)C6'—C7'1.5142 (13)
C2'—H2'0.93C7'—H70'0.96
C2—N31.2936 (8)C7'—H71'0.96
C2—N11.3788 (9)C7'—H72'0.96
C2—S11.7478 (6)C7—C81.5240 (10)
C3'—C4'1.3891 (10)C7—H70.974 (11)
C3'—C71.5239 (10)C8—H800.96
C3—O11.2199 (9)C8—H810.96
C3—N11.3810 (9)C8—H820.96
C3—C41.4966 (11)C9—H900.96
C4—H400.96C9—H910.96
C4—H410.96C9—H920.96
C4—H420.96C41—O21.2357 (8)
C4'—C5'1.4040 (12)C41—N41.3679 (8)
C4'—H4'0.93C41—C421.4998 (10)
C5—N41.4878 (8)C42—H4200.96
C5—C61.5250 (10)C42—H4210.96
C5—C91.5267 (10)C42—H4220.96
C5—S11.8609 (7)N1—H40.889 (13)
C5'—C6'1.3916 (14)N3—N41.3911 (8)
C5'—H5'0.93
C6'—C1'—C2'120.90 (8)C6'—C7'—H70'109.5
C6'—C1'—H1'119.5C6'—C7'—H71'109.5
C2'—C1'—H1'119.5H70'—C7'—H71'109.5
C1'—C2'—C3'121.52 (7)C6'—C7'—H72'109.5
C1'—C2'—H2'119.2H70'—C7'—H72'109.5
C3'—C2'—H2'119.2H71'—C7'—H72'109.5
N3—C2—N1118.94 (6)C3'—C7—C8109.53 (6)
N3—C2—S1118.40 (5)C3'—C7—C6113.80 (5)
N1—C2—S1122.66 (5)C8—C7—C6109.97 (6)
C4'—C3'—C2'117.51 (7)C3'—C7—H7108.5 (7)
C4'—C3'—C7120.72 (6)C8—C7—H7106.4 (7)
C2'—C3'—C7121.70 (6)C6—C7—H7108.3 (7)
O1—C3—N1122.14 (7)C7—C8—H80109.5
O1—C3—C4122.65 (7)C7—C8—H81109.5
N1—C3—C4115.21 (6)H80—C8—H81109.5
C3—C4—H40109.5C7—C8—H82109.5
C3—C4—H41109.5H80—C8—H82109.5
H40—C4—H41109.5H81—C8—H82109.5
C3—C4—H42109.5C5—C9—H90109.5
H40—C4—H42109.5C5—C9—H91109.5
H41—C4—H42109.5H90—C9—H91109.5
C3'—C4'—C5'120.78 (8)C5—C9—H92109.5
C3'—C4'—H4'119.6H90—C9—H92109.5
C5'—C4'—H4'119.6H91—C9—H92109.5
N4—C5—C6111.56 (5)O2—C41—N4121.03 (6)
N4—C5—C9112.62 (6)O2—C41—C42122.10 (6)
C6—C5—C9110.89 (6)N4—C41—C42116.87 (6)
N4—C5—S1102.92 (4)C41—C42—H420109.5
C6—C5—S1110.44 (5)C41—C42—H421109.5
C9—C5—S1108.08 (5)H420—C42—H421109.5
C6'—C5'—C4'121.47 (8)C41—C42—H422109.5
C6'—C5'—H5'119.3H420—C42—H422109.5
C4'—C5'—H5'119.3H421—C42—H422109.5
C5—C6—C7117.10 (5)C2—N1—C3124.37 (6)
C5—C6—H61108.0C2—N1—H4113.9 (8)
C7—C6—H61108.0C3—N1—H4121.7 (8)
C5—C6—H62108.0C2—N3—N4110.79 (5)
C7—C6—H62108.0C41—N4—N3118.12 (5)
H61—C6—H62107.3C41—N4—C5124.65 (5)
C1'—C6'—C5'117.78 (7)N3—N4—C5116.65 (5)
C1'—C6'—C7'120.12 (10)C2—S1—C589.03 (3)
C5'—C6'—C7'122.10 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.89 (1)1.96 (1)2.8391 (7)169 (1)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H23N3O2S
Mr333.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.3984 (2), 11.0510 (2), 16.6045 (3)
β (°) 90.442 (10)
V3)1724.52 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
52162, 8286, 7182
Rint0.019
(sin θ/λ)max1)0.842
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.108, 1.03
No. of reflections8286
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.19

Computer programs: APEX-W2K-NT (Bruker, 2005), SAINT-Plus (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H4···O2i0.89 (1)1.96 (1)2.8391 (7)169 (1)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Professor J. C. Daran for fruitful discussions.

References

First citationBeatriz, N. B., Albertina, G. M., Miriam, M. A., Angel, A. L., Graciela, Y. M. & Norma, B. D. (2002). Arkivok, X, 14-23.  Google Scholar
First citationBruker (2005). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLoughzail, M., Mazoir, N., Maya, C. M., Berraho, M., Benharref, A. & Bouhmaida, N. (2009). Acta Cryst. E65, o4.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazoir, N., Benharref, A., Bailén, M., Reina, M. & González-Coloma, A. (2008). Phytochemistry, 69, 1328–1338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMohammed, T., Mazoir, N., Daran, J.-C., Berraho, M. & Benharref, A. (2008). Acta Cryst. E64, o610–o611.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationSakthivel, P., Joseph, P. S., Muthiah, P. T., Sethusankar, K. & Thennarasu, S. (2008). Acta Cryst. E64, o216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTehranchian, S., Akbarzadeh, T., Fazeli, R. M., Jamifar, H. & Shafiee, A. (2005). Bioorg. Med. Chem. Lett. 15, 1023–1025.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, Y.-G., Cao, L., Yang, J., Ye, W.-F., Zhou, Q.-C. & Lu, B.-X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar
First citationWang, Y.-G., Wang, Z. Y., Zhao, X. Y. & Song, X. J. (2004). Chin. J. Org. Chem. 24, 1606–1609.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o267-o268
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds