organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(3,5-di­meth­oxy­phen­yl)ethyn­yl]benzene

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 25 December 2008; accepted 13 January 2009; online 17 January 2009)

The title compound, C26H22O4, is a derivative of 1,4-bis­(phenyl­ethyn­yl)benzene substituted by four meth­oxy groups on the terminal benzene rings. The mol­ecule is almost planar with an r.m.s. deviation of 0.266 Å. The dihedral angles between the two terminal benzene rings and the central benzene ring are 7.96 (6) and 13.32 (7)°. In the crystal structure, mol­ecules aggregate via C—H⋯O inter­actions, forming mol­ecular tapes along the a axis, which aggregate to form a herring-bone structure.

Related literature

For the crystal structure of 1,4-bis­[(2,6-dimethoxy­phen­yl)ethyn­yl]benzene, see: Ono et al. (2008[Ono, K., Tsukamoto, K., Tomura, M. & Saito, K. (2008). Acta Cryst. E64, o1069.]). For related sructures, including a 1,4-bis­(phenyl­ethyn­yl)benzene system, see: Watt et al. (2004[Watt, S. W., Dai, C., Scott, A. J., Burke, J. M., Thomas, R. Ll., Collings, J. C., Viney, C., Clegg, W. & Marder, T. B. (2004). Angew. Chem. Int. Ed. 43, 3061-3063.]); Li et al. (1998[Li, H., Powell, D. R., Firman, T. K. & West, R. (1998). Macromolecules, 31, 1093-1098.]); Filatov & Petrukhina (2005[Filatov, A. S. & Petrukhina, M. A. (2005). Acta Cryst. C61, o193-o194.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22O4

  • Mr = 398.44

  • Monoclinic, P 21 /a

  • a = 8.8980 (5) Å

  • b = 19.4610 (8) Å

  • c = 12.2820 (5) Å

  • β = 100.607 (1)°

  • V = 2090.46 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (1) K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: none

  • 15238 measured reflections

  • 4638 independent reflections

  • 3914 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.11

  • 4638 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.95 2.42 3.3511 (17) 167
C14—H14⋯O2ii 0.95 2.37 3.2758 (16) 160
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of interests in their molecular structures, optical properties, and molecular electronics. Among these ethynylated aromatic compounds, 1,4-bis(phenylethynyl)benzene derivatives have been extensively studied. These compounds have stiff, linear molecular structures and are used as building blocks in the applications. Recently, we found that 1,4-bis[(2,6-dimethoxyphenyl)ethynyl]benzene, (II), formed a zigzag molecular network in the crystal (Ono et al., 2008). The crystal structure is different from those of 1,4-bis(phenylethynyl)benzene derivatives (Watt et al., 2004; Li et al., 1998; Filatov & Petrukhina, 2005). With regard to this, we investigated the molecular and crystal structure of the title compound, (I), which is a regioisomer of (II). The substitution effect of four methoxy groups at the terminal benzene rings was studied.

The molecular structure of (I) is shown in Fig. 1. The molecule is almost planar with an r.m.s deviation of 0.266 Å. The dihedral angles between the terminal benzene rings and the central benzene ring are 7.96 (6)° (C1–C6) and 13.32 (7)° (C17–C22). The methoxy groups are coplanar with the attached benzene rings.

The crystal structure is characterized by a molecular tape along the a axis formed by C—H···O interactions (Table 1 and Fig. 2). The molecular tapes aggregate to form a herring-bone-type structure, as shown in Fig.3. The crystal structure of (I) is different from that of (II). The crystal structures of (I) and (II) indicate that the methoxy groups at terminal benzene rings play an important role in the crystal packing.

Related literature top

For the crystal structure of 1,4-bis[(2,6-dimethoxyphenyl)ethynyl]benzene, see: Ono et al. (2008). For related sructures, including a 1,4-bis(phenylethynyl)benzene system, see: Watt et al. (2004); Li et al. (1998); Filatov & Petrukhina (2005).

Experimental top

The title compound (I) was prepared as follows: Tetrakis(triphenylphosphine)palladium(0) [Pd(PPh3)4] (52 mg, 0.045 mmol) was added to a mixture of 1-ethynyl-3,5-dimethoxybenzene (0.39 g, 2.4 mmol), 1,4-diiodobenzene (0.39 g, 1.2 mmol) and copper(I) iodide (5 mg, 0.03 mmol) in dry triethylamine (7 ml) under nitrogen. The reaction mixture was stirred for 18 h at 353 K. After removal of the solvent, dichloromethane (20 ml) and aqueous disodium ethylenediaminetetraacetate (Na2edta) solution (5%, 20 ml) were added. The organic layer was separated and washed with water (20 ml). The organic solution was dried over Na2SO4 and concentrated. The residue was chromatographed on silica gel (CH2Cl2) to afford the title compound (0.23 g, 49%) as a yellow powder. Yellow crystals of the compound, suitable for X-ray analysis were grown from an ethanol solution.

Refinement top

All H atoms were placed in geometrically calculated positions, with C-H = 0.95 (aromatic) and 0.98 Å (methyl) and Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(C) (methyl), and refined using a riding model.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing diagram of (I), showing a molecular tape along the a axis.
[Figure 3] Fig. 3. The packing diagram of (I), showing herringbone-type network on the bc plane.
1,4-Bis[(3,5-dimethoxyphenyl)ethynyl]benzene top
Crystal data top
C26H22O4F(000) = 840
Mr = 398.44Dx = 1.266 Mg m3
Monoclinic, P21/aMelting point: 431 K
Hall symbol: -P 2yabMo Kα radiation, λ = 0.71073 Å
a = 8.8980 (5) ÅCell parameters from 5437 reflections
b = 19.4610 (8) Åθ = 3.1–27.5°
c = 12.2820 (5) ŵ = 0.09 mm1
β = 100.607 (1)°T = 173 K
V = 2090.46 (17) Å3Block, yellow
Z = 40.30 × 0.25 × 0.15 mm
Data collection top
Rigaku Mercury CCD
diffractometer
3914 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.024
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 14.7059 pixels mm-1h = 1110
ϕ and ω scansk = 2225
15238 measured reflectionsl = 1512
4638 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0818P)2 + 0.1522P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
4638 reflectionsΔρmax = 0.26 e Å3
271 parametersΔρmin = 0.17 e Å3
0 restraints
Crystal data top
C26H22O4V = 2090.46 (17) Å3
Mr = 398.44Z = 4
Monoclinic, P21/aMo Kα radiation
a = 8.8980 (5) ŵ = 0.09 mm1
b = 19.4610 (8) ÅT = 173 K
c = 12.2820 (5) Å0.30 × 0.25 × 0.15 mm
β = 100.607 (1)°
Data collection top
Rigaku Mercury CCD
diffractometer
3914 reflections with I > 2σ(I)
15238 measured reflectionsRint = 0.024
4638 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.11Δρmax = 0.26 e Å3
4638 reflectionsΔρmin = 0.17 e Å3
271 parameters
Special details top

Experimental. IR (KBr, cm-1): 1605, 1580, 1345, 1254, 1202, 1161, 1065, 841; 1H NMR (CDCl3, δ p.p.m.): 3.81 (s, 12H), 6.48 (t, J = 2.3 Hz, 2H), 6.70 (d, J = 2.3 Hz, 4H), 7.51 (s, 4H); 13C NMR (CDCl3, δ p.p.m.): 55.3, 88.6, 91.3, 102.0, 109.4, 123.0, 124.3, 131.6, 160.6; MS (EI): m/z 398 (M+), 199.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04347 (14)0.17522 (6)0.71287 (10)0.0266 (3)
C20.11459 (14)0.17481 (6)0.67760 (11)0.0266 (3)
H20.17990.19800.71850.032*
C30.17430 (13)0.13932 (6)0.58033 (11)0.0265 (3)
C40.07979 (14)0.10623 (6)0.51948 (11)0.0277 (3)
H40.12250.08240.45350.033*
C50.07839 (14)0.10787 (6)0.55512 (10)0.0261 (3)
C60.14059 (14)0.14194 (6)0.65309 (11)0.0283 (3)
H60.24800.14240.67870.034*
C70.17340 (14)0.07642 (6)0.48619 (11)0.0288 (3)
C80.24292 (14)0.05168 (7)0.42138 (11)0.0288 (3)
C90.32492 (14)0.02180 (6)0.34289 (10)0.0262 (3)
C100.24597 (14)0.01164 (7)0.24864 (11)0.0286 (3)
H100.13770.01500.23710.034*
C110.32439 (14)0.03986 (7)0.17214 (11)0.0303 (3)
H110.26950.06210.10810.036*
C120.48372 (14)0.03594 (6)0.18839 (10)0.0273 (3)
C130.56275 (14)0.00329 (6)0.28348 (11)0.0297 (3)
H130.67120.00090.29590.036*
C140.48439 (14)0.02550 (7)0.35943 (11)0.0295 (3)
H140.53920.04790.42330.035*
C150.56748 (14)0.06453 (7)0.10994 (11)0.0305 (3)
C160.64138 (15)0.08764 (7)0.04662 (11)0.0313 (3)
C170.73414 (14)0.11338 (6)0.02860 (11)0.0289 (3)
C180.67256 (14)0.15780 (7)0.11433 (11)0.0309 (3)
H180.56890.17200.12310.037*
C190.76419 (14)0.18118 (7)0.18695 (11)0.0289 (3)
C200.91672 (14)0.16179 (7)0.17484 (11)0.0289 (3)
H200.97920.17870.22380.035*
C210.97568 (14)0.11696 (7)0.08931 (11)0.0310 (3)
C220.88622 (14)0.09254 (7)0.01627 (11)0.0316 (3)
H220.92830.06190.04160.038*
C230.02302 (18)0.24526 (8)0.87014 (12)0.0434 (4)
H23A0.08890.26770.93280.065*
H23B0.04400.21220.89800.065*
H23C0.03920.28000.82470.065*
C240.43253 (15)0.17035 (8)0.58918 (13)0.0409 (4)
H24A0.53650.16180.54880.061*
H24B0.41080.21970.58900.061*
H24C0.42360.15430.66570.061*
C250.77935 (17)0.24753 (8)0.34851 (12)0.0398 (3)
H25A0.71510.27720.40250.060*
H25B0.86790.27370.31070.060*
H25C0.81460.20820.38680.060*
C261.22202 (17)0.11600 (9)0.14105 (15)0.0506 (4)
H26A1.32290.09500.11780.076*
H26B1.18030.10250.21750.076*
H26C1.23160.16610.13660.076*
O10.11541 (10)0.21008 (5)0.80454 (8)0.0360 (2)
O20.32622 (10)0.13442 (5)0.53688 (8)0.0352 (2)
O30.69301 (10)0.22363 (5)0.26936 (9)0.0396 (3)
O41.12292 (11)0.09341 (6)0.07075 (9)0.0477 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0340 (6)0.0247 (6)0.0213 (6)0.0006 (5)0.0059 (5)0.0006 (5)
C20.0318 (6)0.0241 (6)0.0263 (7)0.0011 (5)0.0113 (5)0.0004 (5)
C30.0273 (6)0.0244 (6)0.0287 (7)0.0013 (4)0.0073 (5)0.0015 (5)
C40.0345 (6)0.0257 (6)0.0235 (6)0.0007 (5)0.0068 (5)0.0036 (5)
C50.0322 (6)0.0232 (6)0.0249 (6)0.0034 (5)0.0106 (5)0.0016 (5)
C60.0280 (6)0.0281 (6)0.0291 (7)0.0025 (5)0.0058 (5)0.0005 (5)
C70.0314 (6)0.0279 (6)0.0277 (7)0.0016 (5)0.0071 (5)0.0007 (5)
C80.0324 (6)0.0280 (6)0.0266 (7)0.0020 (5)0.0069 (5)0.0004 (5)
C90.0309 (6)0.0248 (6)0.0243 (6)0.0033 (5)0.0089 (5)0.0012 (5)
C100.0266 (6)0.0331 (7)0.0265 (7)0.0027 (5)0.0061 (5)0.0005 (5)
C110.0340 (6)0.0338 (7)0.0226 (6)0.0014 (5)0.0042 (5)0.0045 (5)
C120.0330 (6)0.0269 (6)0.0238 (6)0.0043 (5)0.0103 (5)0.0000 (5)
C130.0277 (6)0.0333 (7)0.0293 (7)0.0007 (5)0.0083 (5)0.0012 (5)
C140.0325 (6)0.0316 (6)0.0248 (7)0.0015 (5)0.0064 (5)0.0051 (5)
C150.0346 (6)0.0303 (7)0.0278 (7)0.0033 (5)0.0086 (5)0.0006 (5)
C160.0358 (6)0.0316 (7)0.0278 (7)0.0036 (5)0.0092 (5)0.0007 (5)
C170.0344 (6)0.0299 (6)0.0238 (6)0.0062 (5)0.0089 (5)0.0002 (5)
C180.0286 (6)0.0338 (7)0.0322 (7)0.0007 (5)0.0109 (5)0.0034 (6)
C190.0317 (6)0.0294 (6)0.0259 (7)0.0011 (5)0.0065 (5)0.0044 (5)
C200.0296 (6)0.0330 (7)0.0255 (7)0.0018 (5)0.0091 (5)0.0038 (5)
C210.0286 (6)0.0363 (7)0.0285 (7)0.0008 (5)0.0057 (5)0.0029 (5)
C220.0356 (7)0.0348 (7)0.0244 (7)0.0003 (5)0.0057 (5)0.0071 (5)
C230.0512 (8)0.0486 (9)0.0291 (8)0.0112 (7)0.0037 (6)0.0135 (7)
C240.0286 (6)0.0471 (9)0.0487 (9)0.0001 (6)0.0112 (6)0.0110 (7)
C250.0459 (8)0.0429 (8)0.0324 (8)0.0052 (6)0.0121 (6)0.0150 (6)
C260.0339 (7)0.0718 (12)0.0499 (10)0.0131 (7)0.0179 (7)0.0190 (8)
O10.0364 (5)0.0429 (6)0.0274 (5)0.0056 (4)0.0023 (4)0.0123 (4)
O20.0271 (4)0.0380 (5)0.0403 (6)0.0022 (4)0.0062 (4)0.0102 (4)
O30.0361 (5)0.0459 (6)0.0390 (6)0.0091 (4)0.0123 (4)0.0198 (5)
O40.0302 (5)0.0698 (7)0.0446 (7)0.0122 (5)0.0112 (4)0.0260 (6)
Geometric parameters (Å, º) top
C1—O11.3684 (15)C17—C221.3940 (18)
C1—C61.3924 (16)C17—C181.3942 (18)
C1—C21.3933 (17)C18—C191.3911 (16)
C2—C31.3975 (18)C18—H180.95
C2—H20.95C19—O31.3683 (15)
C3—O21.3622 (15)C19—C201.3900 (17)
C3—C41.3826 (16)C20—C211.3917 (18)
C4—C51.3953 (17)C20—H200.95
C4—H40.95C21—O41.3670 (15)
C5—C61.3960 (18)C21—C221.3882 (17)
C5—C71.4386 (16)C22—H220.95
C6—H60.95C23—O11.4274 (16)
C7—C81.1956 (17)C23—H23A0.98
C8—C91.4348 (16)C23—H23B0.98
C9—C141.3977 (17)C23—H23C0.98
C9—C101.3991 (18)C24—O21.4213 (15)
C10—C111.3831 (17)C24—H24A0.98
C10—H100.95C24—H24B0.98
C11—C121.3969 (17)C24—H24C0.98
C11—H110.95C25—O31.4236 (16)
C12—C131.3999 (18)C25—H25A0.98
C12—C151.4345 (16)C25—H25B0.98
C13—C141.3820 (17)C25—H25C0.98
C13—H130.95C26—O41.4130 (17)
C14—H140.95C26—H26A0.98
C15—C161.1949 (18)C26—H26B0.98
C16—C171.4375 (17)C26—H26C0.98
O1—C1—C6115.01 (10)C19—C18—C17119.46 (11)
O1—C1—C2123.44 (11)C19—C18—H18120.3
C6—C1—C2121.49 (11)C17—C18—H18120.3
C1—C2—C3118.14 (11)O3—C19—C20123.57 (11)
C1—C2—H2120.9O3—C19—C18115.19 (11)
C3—C2—H2120.9C20—C19—C18121.24 (12)
O2—C3—C4114.46 (11)C19—C20—C21118.42 (11)
O2—C3—C2124.28 (11)C19—C20—H20120.8
C4—C3—C2121.26 (11)C21—C20—H20120.8
C3—C4—C5119.91 (11)O4—C21—C22115.05 (12)
C3—C4—H4120.0O4—C21—C20123.55 (11)
C5—C4—H4120.0C22—C21—C20121.40 (11)
C4—C5—C6119.88 (11)C21—C22—C17119.40 (12)
C4—C5—C7118.29 (11)C21—C22—H22120.3
C6—C5—C7121.78 (11)C17—C22—H22120.3
C1—C6—C5119.30 (11)O1—C23—H23A109.5
C1—C6—H6120.4O1—C23—H23B109.5
C5—C6—H6120.4H23A—C23—H23B109.5
C8—C7—C5174.44 (14)O1—C23—H23C109.5
C7—C8—C9179.42 (15)H23A—C23—H23C109.5
C14—C9—C10119.07 (11)H23B—C23—H23C109.5
C14—C9—C8120.64 (11)O2—C24—H24A109.5
C10—C9—C8120.29 (11)O2—C24—H24B109.5
C11—C10—C9120.50 (11)H24A—C24—H24B109.5
C11—C10—H10119.8O2—C24—H24C109.5
C9—C10—H10119.8H24A—C24—H24C109.5
C10—C11—C12120.45 (11)H24B—C24—H24C109.5
C10—C11—H11119.8O3—C25—H25A109.5
C12—C11—H11119.8O3—C25—H25B109.5
C11—C12—C13119.00 (11)H25A—C25—H25B109.5
C11—C12—C15121.46 (11)O3—C25—H25C109.5
C13—C12—C15119.54 (11)H25A—C25—H25C109.5
C14—C13—C12120.58 (11)H25B—C25—H25C109.5
C14—C13—H13119.7O4—C26—H26A109.5
C12—C13—H13119.7O4—C26—H26B109.5
C13—C14—C9120.39 (12)H26A—C26—H26B109.5
C13—C14—H14119.8O4—C26—H26C109.5
C9—C14—H14119.8H26A—C26—H26C109.5
C16—C15—C12177.95 (14)H26B—C26—H26C109.5
C15—C16—C17177.90 (14)C1—O1—C23118.13 (10)
C22—C17—C18120.08 (11)C3—O2—C24118.91 (10)
C22—C17—C16119.31 (12)C19—O3—C25117.90 (10)
C18—C17—C16120.60 (11)C21—O4—C26118.72 (11)
O1—C1—C2—C3177.69 (11)C8—C9—C14—C13179.92 (12)
C6—C1—C2—C30.59 (18)C22—C17—C18—C190.2 (2)
C1—C2—C3—O2179.60 (11)C16—C17—C18—C19179.07 (12)
C1—C2—C3—C40.90 (18)C17—C18—C19—O3178.99 (12)
O2—C3—C4—C5179.63 (11)C17—C18—C19—C200.8 (2)
C2—C3—C4—C50.08 (18)O3—C19—C20—C21178.44 (12)
C3—C4—C5—C61.06 (18)C18—C19—C20—C211.4 (2)
C3—C4—C5—C7176.30 (11)C19—C20—C21—O4178.72 (13)
O1—C1—C6—C5176.80 (11)C19—C20—C21—C220.9 (2)
C2—C1—C6—C50.53 (19)O4—C21—C22—C17179.75 (12)
C4—C5—C6—C11.36 (18)C20—C21—C22—C170.1 (2)
C7—C5—C6—C1175.90 (11)C18—C17—C22—C210.6 (2)
C14—C9—C10—C110.84 (19)C16—C17—C22—C21179.55 (12)
C8—C9—C10—C11179.30 (12)C6—C1—O1—C23179.78 (12)
C9—C10—C11—C120.59 (19)C2—C1—O1—C232.94 (18)
C10—C11—C12—C130.28 (19)C4—C3—O2—C24175.99 (12)
C10—C11—C12—C15179.69 (12)C2—C3—O2—C243.55 (18)
C11—C12—C13—C140.90 (19)C20—C19—O3—C251.8 (2)
C15—C12—C13—C14179.07 (12)C18—C19—O3—C25178.03 (12)
C12—C13—C14—C90.65 (19)C22—C21—O4—C26179.71 (14)
C10—C9—C14—C130.22 (19)C20—C21—O4—C260.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.952.423.3511 (17)167
C14—H14···O2ii0.952.373.2758 (16)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC26H22O4
Mr398.44
Crystal system, space groupMonoclinic, P21/a
Temperature (K)173
a, b, c (Å)8.8980 (5), 19.4610 (8), 12.2820 (5)
β (°) 100.607 (1)
V3)2090.46 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15238, 4638, 3914
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.11
No. of reflections4638
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CrystalClear (Rigaku, 2001), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.952.423.3511 (17)167
C14—H14···O2ii0.952.373.2758 (16)160
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilatov, A. S. & Petrukhina, M. A. (2005). Acta Cryst. C61, o193–o194.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, H., Powell, D. R., Firman, T. K. & West, R. (1998). Macromolecules, 31, 1093–1098.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOno, K., Tsukamoto, K., Tomura, M. & Saito, K. (2008). Acta Cryst. E64, o1069.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatt, S. W., Dai, C., Scott, A. J., Burke, J. M., Thomas, R. Ll., Collings, J. C., Viney, C., Clegg, W. & Marder, T. B. (2004). Angew. Chem. Int. Ed. 43, 3061–3063.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds