organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-[3-(2,4-Di­methyl­anilino)-2-hy­droxy­prop­­oxy]-1,8-dihydr­­oxy-3-methyl-9,10-di­hydro­anthracene-9,10-dione

aSchool of Chemistry and Chemical Engineering, Shandong University, Shandong 250100, People's Republic of China, and bSchool of Pharmacy, Shandong University, Shandong 250012, People's Republic of China
*Correspondence e-mail: xpw6@163.com

(Received 26 December 2008; accepted 18 January 2009; online 23 January 2009)

In the title compound, C26H25NO6, the anthraquinone ring system forms a dihedral angle of 15.5 (1)° with the benzene ring of the dimethyl­aniline group. Intra­molecular O—H⋯O hydrogen bonding is observed between the carbonyl and two hydroxyl groups. The mol­ecules are linked into a ribbon-like structure along the [100] direction by O—H⋯N and C—H⋯O hydrogen bonds. The crystal used was twinned via a 180° rotation about [100]. The ratio of the two twin components is 0.947 (1):0.053 (1).

Related literature

For the biological properties of emodin and its derivatives, see: Srinivas et al. (2003[Srinivas, G., Anto, R. J., Srinivas, P., Vidhyalakshmi, S., Senan, V. P. & Karunagaran, D. (2003). Eur. J. Pharmacol. 473, 117-125.]); Teich et al., 2004[Teich, L., Daub, K. S., Krugel, V., Nissler, L., Gebhardt, R. & Eger, K. (2004). Bioorg. Med. Chem. 12, 5961-5971.]; Wang & Xu (2005[Wang, X.-P. & Xu, W.-F. (2005). Bull. Korean Chem. Soc. 26, 1923-1924.]). For a related structure, see: Wang et al. (2006[Wang, X.-P., Li, X., Wu, J.-F., Xu, W.-F. & Li, W.-L. (2006). Acta Cryst. E62, o4156-o4158.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25NO6

  • Mr = 447.47

  • Monoclinic, P 21 /c

  • a = 5.0668 (3) Å

  • b = 29.7496 (17) Å

  • c = 14.2201 (8) Å

  • β = 90.530 (4)°

  • V = 2143.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 (2) K

  • 0.32 × 0.14 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker,2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.996

  • 17905 measured reflections

  • 4939 independent reflections

  • 2028 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.232

  • S = 0.99

  • 4939 reflections

  • 305 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯O2 0.82 1.86 2.575 (4) 145
O3—H3A⋯O2 0.82 1.83 2.556 (4) 147
O6—H6⋯N1i 0.82 2.40 3.218 (5) 177
C15—H15⋯O4ii 0.93 2.43 3.334 (4) 164
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Emodin and its derivatives have been found to possess diverse biological properties, such as antimicrobial, antiviral, antitumor, anti-inflammatory, anti-oxidant, immunosuppressive, anti-ulcerogenic, fungicidal and chemopreventive activities (Wang & Xu, 2005; Teich et al., 2004; Srinivas et al., 2003). As part of our ongoing research on emodin derivatives (Wang & Xu, 2005; Wang et al., 2006), we report here the crystal structure of the title compound.

The molecular structure of the title compound is illustrated in Fig. 1. The anthraquinone ring system is essentially planar and it forms a dihedral angle of 15.5 (1)° with the benzene ring of the dimethylaniline group. There are two intramolecular O—H···O hydrogen-bonding interactions between the carbonyl and two hydroxy groups (Fig. 1).

The molecules are linked into a ribbon-like structure along the [100] by intermolecular O—H···N and C—H···O hydrogen bonds (Table 1 and Fig.2).

Related literature top

For the biological properties of emodin and its derivatives, see: Srinivas et al. (2003); Teich et al., 2004; Wang & Xu (2005). For a related structure, see: Wang et al. (2006).

Experimental top

A mixture of emodin (10 mmol) and epichlorohydrin (421 mmol, 33 ml) was stirred under reflux in a solution of potassium hydroxide (10 mmol) in water (3 ml) until the disappearance of the starting material, as evidenced by thin-layer chromatography (about 4 h). After the reaction was over, the solvent was removed in vacuo and the residue was partitioned between chloroform (50 ml) and distilled water (20 ml). The organic phase was washed with water (15 ml) and brine (15 ml), and dried over anhydrous sodium sulfate. The solvent was removed to give the key intermediate, 1,8-Dihydroxy-3-methyl-6-(oxiran-2-ylmethoxy)-9,10-dihydroanthracene-9,10-dione (Wang et al., 2006) as a yellow oil, which was purified by flash chromatography (silica gel, petroleum ether–acetone 3:1). To a solution of above intermediate (0.326 g, 1 mmol) in chloroform was added 2,4-dimethylaniline (1.1 mmol). The mixture was refluxed with stirring and monitored by TLC until the reaction was completed. The crude product was purified by column chromatography (petroleum ether–acetone 3:1) to afford the title compound, which was dissolved in methanol (15 ml) and kept at room temperature for 15 d to get yellow single crystals.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93–0.98 Å. The Uiso values were set at 1.2 to 1.5 (hydroxyl and methyl) times the Ueq(carrier atom). The components of the Uij parameters in the direction of the C17—O6 bond were restrained to be equal. The highest residual density peak is located 0.65 Å from atom H17. Attempts to refine this peak as a disordered O6 atom, say O6A, resulted in a very short C17—O6A distance (1.14 Å) and hence the original model was retained. The crystal used was twinned via a 180° rotation about the [100]. The ratio of the two twin components is 94.7 (1): 5.3 (1).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen-bonding interactions.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen-bonding interactions.
6-[3-(2,4-Dimethylanilino)-2-hydroxypropoxy]-1,8-dihydroxy-3-methyl-9,10- dihydroanthracene-9,10-dione top
Crystal data top
C26H25NO6F(000) = 944
Mr = 447.47Dx = 1.387 Mg m3
Monoclinic, P21/cMelting point = 469–470 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.0668 (3) ÅCell parameters from 1559 reflections
b = 29.7496 (17) Åθ = 2.5–19.5°
c = 14.2201 (8) ŵ = 0.10 mm1
β = 90.530 (4)°T = 295 K
V = 2143.4 (2) Å3Plate, yellow
Z = 40.32 × 0.14 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4939 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ϕ and ω scansθmax = 27.6°, θmin = 0.7°
Absorption correction: multi-scan
(SADABS; Bruker,2005)
h = 56
Tmin = 0.969, Tmax = 0.996k = 3830
17905 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.11P)2]
where P = (Fo2 + 2Fc2)/3
4939 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.65 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C26H25NO6V = 2143.4 (2) Å3
Mr = 447.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.0668 (3) ŵ = 0.10 mm1
b = 29.7496 (17) ÅT = 295 K
c = 14.2201 (8) Å0.32 × 0.14 × 0.04 mm
β = 90.530 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4939 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker,2005)
2028 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.996Rint = 0.072
17905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0721 restraint
wR(F2) = 0.232H-atom parameters constrained
S = 0.99Δρmax = 0.65 e Å3
4939 reflectionsΔρmin = 0.28 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0367 (9)1.13766 (15)0.5591 (3)0.0676 (13)
H2D1.14271.16380.54690.101*
H1B0.91291.14400.60880.101*
H1C1.14841.11320.57740.101*
C20.8902 (8)1.12513 (13)0.4719 (3)0.0524 (10)
C30.9564 (8)1.14342 (13)0.3858 (3)0.0600 (11)
H31.09141.16450.38240.072*
C40.8269 (8)1.13118 (13)0.3037 (3)0.0535 (11)
C50.6234 (7)1.09890 (12)0.3064 (2)0.0454 (9)
C60.5564 (7)1.08053 (12)0.3954 (2)0.0431 (9)
C70.6889 (7)1.09336 (13)0.4748 (3)0.0507 (10)
H70.64261.08040.53220.061*
C80.4926 (7)1.08413 (12)0.2218 (3)0.0453 (10)
C90.2884 (7)1.05060 (12)0.2275 (2)0.0431 (9)
C100.2116 (7)1.03164 (12)0.3150 (2)0.0409 (9)
C110.3414 (7)1.04653 (13)0.4030 (3)0.0461 (10)
C120.1578 (8)1.03526 (13)0.1470 (2)0.0497 (10)
C130.0369 (8)1.00294 (13)0.1525 (3)0.0516 (10)
H130.12150.99330.09830.062*
C140.1057 (7)0.98486 (12)0.2389 (3)0.0457 (9)
C150.0191 (7)0.99984 (12)0.3210 (2)0.0448 (9)
H150.02980.98810.37920.054*
C160.4139 (8)0.93266 (13)0.1716 (3)0.0549 (11)
H16A0.51210.95520.13700.066*
H16B0.28150.91980.13000.066*
C170.5967 (8)0.89666 (13)0.2081 (3)0.0526 (10)
H170.72910.91110.24870.063*
C180.7400 (8)0.87514 (14)0.1259 (3)0.0536 (11)
H18A0.61290.86240.08200.064*
H18B0.84210.89770.09300.064*
C191.0724 (7)0.81541 (12)0.1014 (3)0.0465 (10)
C201.1235 (8)0.82906 (14)0.0102 (3)0.0530 (10)
H201.03730.85410.01450.064*
C211.3044 (8)0.80537 (15)0.0453 (3)0.0572 (11)
H211.33580.81490.10640.069*
C221.4366 (8)0.76818 (15)0.0109 (3)0.0561 (11)
C231.6400 (9)0.74387 (17)0.0682 (3)0.0833 (15)
H23A1.78960.73670.02900.125*
H23B1.69510.76270.11920.125*
H23C1.56500.71660.09290.125*
C241.3773 (8)0.75469 (13)0.0789 (3)0.0596 (12)
H241.46170.72930.10250.072*
C251.1997 (8)0.77663 (13)0.1365 (3)0.0521 (10)
C261.1395 (11)0.76031 (16)0.2335 (3)0.0799 (15)
H26A1.17200.78400.27790.120*
H26B1.25030.73510.24830.120*
H26C0.95770.75140.23640.120*
N10.9123 (7)0.84036 (11)0.1610 (2)0.0588 (9)
H1E0.91650.83490.22040.071*
O10.9091 (7)1.15045 (11)0.2223 (2)0.0767 (9)
H1D0.83541.13830.17790.115*
O20.5598 (6)1.10083 (9)0.14266 (17)0.0608 (8)
O30.2174 (6)1.05188 (11)0.06045 (18)0.0716 (9)
H3A0.33651.07040.06480.107*
O40.2717 (6)1.03226 (10)0.47874 (18)0.0662 (9)
O50.2908 (5)0.95260 (9)0.25280 (17)0.0572 (8)
O60.4665 (6)0.86440 (11)0.2613 (2)0.0766 (9)
H60.32210.85900.23720.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (3)0.069 (3)0.062 (3)0.006 (2)0.010 (2)0.009 (2)
C20.053 (3)0.053 (3)0.051 (3)0.000 (2)0.003 (2)0.006 (2)
C30.065 (3)0.050 (3)0.066 (3)0.016 (2)0.008 (2)0.004 (2)
C40.063 (3)0.045 (2)0.052 (3)0.005 (2)0.001 (2)0.0046 (19)
C50.047 (2)0.043 (2)0.047 (2)0.0015 (19)0.0015 (18)0.0008 (18)
C60.046 (2)0.046 (2)0.038 (2)0.0011 (18)0.0002 (17)0.0030 (17)
C70.055 (2)0.056 (3)0.040 (2)0.000 (2)0.0018 (19)0.0014 (18)
C80.051 (2)0.041 (2)0.045 (2)0.0038 (19)0.0000 (18)0.0027 (18)
C90.051 (2)0.038 (2)0.040 (2)0.0008 (18)0.0012 (18)0.0020 (17)
C100.043 (2)0.039 (2)0.041 (2)0.0025 (18)0.0010 (17)0.0015 (17)
C110.044 (2)0.052 (2)0.042 (2)0.0003 (19)0.0010 (18)0.0057 (19)
C120.061 (3)0.050 (2)0.038 (2)0.002 (2)0.0015 (19)0.0049 (18)
C130.060 (3)0.055 (3)0.040 (2)0.004 (2)0.0061 (19)0.0042 (19)
C140.049 (2)0.042 (2)0.046 (2)0.002 (2)0.0009 (18)0.0017 (18)
C150.050 (2)0.047 (2)0.037 (2)0.0029 (19)0.0004 (17)0.0010 (17)
C160.053 (2)0.056 (3)0.055 (3)0.005 (2)0.006 (2)0.006 (2)
C170.053 (2)0.048 (2)0.057 (2)0.004 (2)0.011 (2)0.0007 (19)
C180.050 (2)0.057 (3)0.053 (3)0.005 (2)0.001 (2)0.0040 (19)
C190.049 (2)0.046 (2)0.045 (2)0.0026 (19)0.0024 (18)0.0039 (18)
C200.055 (2)0.055 (3)0.049 (2)0.001 (2)0.004 (2)0.0003 (19)
C210.063 (3)0.066 (3)0.042 (2)0.005 (2)0.011 (2)0.006 (2)
C220.050 (2)0.058 (3)0.060 (3)0.002 (2)0.008 (2)0.009 (2)
C230.071 (3)0.081 (4)0.099 (4)0.008 (3)0.020 (3)0.015 (3)
C240.064 (3)0.040 (2)0.074 (3)0.005 (2)0.000 (2)0.003 (2)
C250.062 (3)0.042 (2)0.052 (2)0.002 (2)0.000 (2)0.0045 (19)
C260.118 (4)0.062 (3)0.059 (3)0.002 (3)0.005 (3)0.014 (2)
N10.073 (2)0.064 (2)0.0389 (18)0.015 (2)0.0049 (17)0.0037 (16)
O10.094 (2)0.077 (2)0.0592 (19)0.0371 (19)0.0034 (18)0.0122 (17)
O20.080 (2)0.0632 (19)0.0397 (16)0.0175 (16)0.0012 (14)0.0092 (13)
O30.096 (3)0.081 (2)0.0376 (16)0.0287 (18)0.0062 (15)0.0095 (14)
O40.078 (2)0.082 (2)0.0380 (16)0.0233 (16)0.0002 (14)0.0067 (15)
O50.0615 (18)0.0604 (18)0.0498 (16)0.0191 (15)0.0021 (14)0.0034 (13)
O60.080 (2)0.078 (2)0.072 (2)0.0034 (18)0.0101 (17)0.0016 (17)
Geometric parameters (Å, º) top
C1—C21.498 (5)C16—H16A0.97
C1—H2D0.96C16—H16B0.97
C1—H1B0.96C17—O61.392 (5)
C1—H1C0.96C17—C181.523 (5)
C2—C31.378 (5)C17—H170.98
C2—C71.391 (5)C18—N11.440 (5)
C3—C41.393 (5)C18—H18A0.97
C3—H30.93C18—H18B0.97
C4—O11.353 (4)C19—C201.385 (5)
C4—C51.409 (5)C19—N11.393 (5)
C5—C61.416 (5)C19—C251.411 (5)
C5—C81.448 (5)C20—C211.404 (5)
C6—C71.373 (5)C20—H200.93
C6—C111.490 (5)C21—C221.380 (6)
C7—H70.93C21—H210.93
C8—O21.274 (4)C22—C241.375 (5)
C8—C91.439 (5)C22—C231.505 (6)
C9—C121.403 (5)C23—H23A0.96
C9—C101.417 (5)C23—H23B0.96
C10—C151.361 (5)C23—H23C0.96
C10—C111.487 (5)C24—C251.385 (5)
C11—O41.207 (4)C24—H240.93
C12—O31.358 (4)C25—C261.496 (5)
C12—C131.379 (5)C26—H26A0.96
C13—C141.384 (5)C26—H26B0.96
C13—H130.93C26—H26C0.96
C14—O51.355 (4)N1—H1E0.86
C14—C151.405 (5)O1—H1D0.82
C15—H150.93O3—H3A0.82
C16—O51.445 (4)O6—H60.82
C16—C171.505 (5)
C2—C1—H2D109.5C17—C16—H16B110.4
C2—C1—H1B109.5H16A—C16—H16B108.6
H2D—C1—H1B109.5O6—C17—C16112.6 (3)
C2—C1—H1C109.5O6—C17—C18111.0 (3)
H2D—C1—H1C109.5C16—C17—C18109.3 (3)
H1B—C1—H1C109.5O6—C17—H17107.9
C3—C2—C7117.8 (4)C16—C17—H17107.9
C3—C2—C1121.2 (4)C18—C17—H17107.9
C7—C2—C1120.9 (4)N1—C18—C17109.1 (3)
C2—C3—C4121.9 (4)N1—C18—H18A109.9
C2—C3—H3119.0C17—C18—H18A109.9
C4—C3—H3119.0N1—C18—H18B109.9
O1—C4—C3117.5 (4)C17—C18—H18B109.9
O1—C4—C5122.1 (4)H18A—C18—H18B108.3
C3—C4—C5120.3 (4)C20—C19—N1121.9 (4)
C4—C5—C6117.2 (3)C20—C19—C25118.8 (4)
C4—C5—C8121.6 (3)N1—C19—C25119.2 (3)
C6—C5—C8121.2 (3)C19—C20—C21120.5 (4)
C7—C6—C5120.8 (4)C19—C20—H20119.8
C7—C6—C11119.4 (3)C21—C20—H20119.8
C5—C6—C11119.7 (3)C22—C21—C20121.4 (4)
C6—C7—C2121.9 (4)C22—C21—H21119.3
C6—C7—H7119.1C20—C21—H21119.3
C2—C7—H7119.1C24—C22—C21117.0 (4)
O2—C8—C9120.4 (3)C24—C22—C23121.3 (4)
O2—C8—C5119.7 (3)C21—C22—C23121.8 (4)
C9—C8—C5119.9 (3)C22—C23—H23A109.5
C12—C9—C10117.3 (3)C22—C23—H23B109.5
C12—C9—C8121.6 (3)H23A—C23—H23B109.5
C10—C9—C8121.1 (3)C22—C23—H23C109.5
C15—C10—C9121.5 (3)H23A—C23—H23C109.5
C15—C10—C11118.4 (3)H23B—C23—H23C109.5
C9—C10—C11120.1 (3)C22—C24—C25124.0 (4)
O4—C11—C10121.2 (3)C22—C24—H24118.0
O4—C11—C6120.7 (3)C25—C24—H24118.0
C10—C11—C6118.0 (3)C24—C25—C19118.3 (4)
O3—C12—C13117.2 (3)C24—C25—C26122.0 (4)
O3—C12—C9121.2 (3)C19—C25—C26119.7 (4)
C13—C12—C9121.6 (3)C25—C26—H26A109.5
C12—C13—C14119.7 (3)C25—C26—H26B109.5
C12—C13—H13120.2H26A—C26—H26B109.5
C14—C13—H13120.2C25—C26—H26C109.5
O5—C14—C13125.0 (3)H26A—C26—H26C109.5
O5—C14—C15114.8 (3)H26B—C26—H26C109.5
C13—C14—C15120.2 (3)C19—N1—C18121.8 (3)
C10—C15—C14119.7 (3)C19—N1—H1E119.1
C10—C15—H15120.1C18—N1—H1E119.1
C14—C15—H15120.1C4—O1—H1D109.5
O5—C16—C17106.6 (3)C12—O3—H3A109.5
O5—C16—H16A110.4C14—O5—C16118.5 (3)
C17—C16—H16A110.4C17—O6—H6109.5
O5—C16—H16B110.4
C7—C2—C3—C40.5 (6)C10—C9—C12—O3179.4 (3)
C1—C2—C3—C4178.2 (4)C8—C9—C12—O30.7 (6)
C2—C3—C4—O1178.9 (4)C10—C9—C12—C130.2 (6)
C2—C3—C4—C50.7 (6)C8—C9—C12—C13179.6 (3)
O1—C4—C5—C6179.1 (4)O3—C12—C13—C14180.0 (4)
C3—C4—C5—C60.9 (6)C9—C12—C13—C140.3 (6)
O1—C4—C5—C80.8 (6)C12—C13—C14—O5179.1 (3)
C3—C4—C5—C8177.4 (4)C12—C13—C14—C151.0 (6)
C4—C5—C6—C71.1 (5)C9—C10—C15—C140.8 (5)
C8—C5—C6—C7177.3 (3)C11—C10—C15—C14179.5 (3)
C4—C5—C6—C11179.5 (3)O5—C14—C15—C10178.8 (3)
C8—C5—C6—C112.1 (5)C13—C14—C15—C101.3 (5)
C5—C6—C7—C20.9 (6)O5—C16—C17—O657.8 (4)
C11—C6—C7—C2179.6 (3)O5—C16—C17—C18178.3 (3)
C3—C2—C7—C60.6 (6)O6—C17—C18—N154.5 (4)
C1—C2—C7—C6178.3 (4)C16—C17—C18—N1179.3 (3)
C4—C5—C8—O20.7 (6)N1—C19—C20—C21174.2 (4)
C6—C5—C8—O2179.0 (3)C25—C19—C20—C211.8 (6)
C4—C5—C8—C9179.1 (3)C19—C20—C21—C220.2 (6)
C6—C5—C8—C90.8 (5)C20—C21—C22—C241.8 (6)
O2—C8—C9—C120.1 (5)C20—C21—C22—C23177.1 (4)
C5—C8—C9—C12179.7 (3)C21—C22—C24—C251.5 (6)
O2—C8—C9—C10179.9 (3)C23—C22—C24—C25177.5 (4)
C5—C8—C9—C100.1 (5)C22—C24—C25—C190.5 (6)
C12—C9—C10—C150.0 (5)C22—C24—C25—C26179.3 (4)
C8—C9—C10—C15179.9 (3)C20—C19—C25—C242.1 (6)
C12—C9—C10—C11179.8 (3)N1—C19—C25—C24174.0 (3)
C8—C9—C10—C110.4 (5)C20—C19—C25—C26177.7 (4)
C15—C10—C11—O42.9 (5)N1—C19—C25—C266.2 (6)
C9—C10—C11—O4176.8 (4)C20—C19—N1—C1815.6 (6)
C15—C10—C11—C6178.5 (3)C25—C19—N1—C18168.4 (4)
C9—C10—C11—C61.7 (5)C17—C18—N1—C19178.8 (3)
C7—C6—C11—O44.6 (6)C13—C14—O5—C165.0 (5)
C5—C6—C11—O4176.0 (4)C15—C14—O5—C16175.1 (3)
C7—C6—C11—C10176.9 (3)C17—C16—O5—C14176.9 (3)
C5—C6—C11—C102.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···O20.821.862.575 (4)145
O3—H3A···O20.821.832.556 (4)147
O6—H6···N1i0.822.403.218 (5)177
C15—H15···O4ii0.932.433.334 (4)164
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC26H25NO6
Mr447.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)5.0668 (3), 29.7496 (17), 14.2201 (8)
β (°) 90.530 (4)
V3)2143.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.14 × 0.04
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker,2005)
Tmin, Tmax0.969, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
17905, 4939, 2028
Rint0.072
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.232, 0.99
No. of reflections4939
No. of parameters305
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···O20.821.862.575 (4)145
O3—H3A···O20.821.832.556 (4)147
O6—H6···N1i0.822.403.218 (5)177
C15—H15···O4ii0.932.433.334 (4)164
Symmetry codes: (i) x1, y, z; (ii) x, y+2, z+1.
 

Acknowledgements

This project was supported by the Youth Award of Shandong Province (grant No. 2007BS03033) and the Natural Science Foundation of Shandong Province (grant No. Y2005C35).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrinivas, G., Anto, R. J., Srinivas, P., Vidhyalakshmi, S., Senan, V. P. & Karunagaran, D. (2003). Eur. J. Pharmacol. 473, 117–125.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTeich, L., Daub, K. S., Krugel, V., Nissler, L., Gebhardt, R. & Eger, K. (2004). Bioorg. Med. Chem. 12, 5961–5971.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, X.-P., Li, X., Wu, J.-F., Xu, W.-F. & Li, W.-L. (2006). Acta Cryst. E62, o4156–o4158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, X.-P. & Xu, W.-F. (2005). Bull. Korean Chem. Soc. 26, 1923–1924.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds