organic compounds
3-(2,6-Dioxopiperidin-3-yl)-3-azabicyclo[3.2.0]heptane-2,4-dione
aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title molecule, C11H12N2O4, consists of a 3-azabicyclo[3.2.0]heptane group containing a nearly planar cyclobutane ring (r.m.s. deviation of fitted atoms is 0.0609 Å), fused to a pyrrolidine ring, bonded to a 2,6-dioxopiperidine ring at the 3-position. The angle between the mean planes of the cyclobutane and fused pyrrolidine ring is 67.6 (6)°. The dihedral angles between the mean planes of the pyrrolidine and cyclobutane rings and the dioxopiperidine ring are 73.9 (2) and 62.4 (4)°, respectively. The pyrrolidine and dioxopiperidine rings are twisted about the 3-yl group [torsion angles = −55.0 (1) and 115.0 (1)°] in a nearly perpendicular manner. Crystal packing is influenced by extensive intermolecular C—H⋯O and N—H⋯O interactions between all four carbonyl O atoms and H atoms from the cyclobutane and dioxopiperidine rings, as well as between the N atom and an H atom from the cyclobutane ring. In addition, weak π-ring interactions also occur between H atoms from the cyclobutane ring and the five-membered pyrrolidine ring. As a result, molecules are linked into infinite chains diagonally along the [101] plane of the in an alternate inverted pattern.
Related literature
For related structures, see: Muller & Man (2008); Yamamoto et al. (2008); Zeldis (2008). For related literature, see: Carson et al. (2004); Werbel et al. (1968); Cremer & Pople (1975); Schmidt & Polik (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell CrysAlisPro; data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809002839/cs2103sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002839/cs2103Isup2.hkl
The title compound was synthesized as follows: cis-1,2-cyclobutane dicarboxylic acid anhydride (0.1 g, 0.79 mmol), glutamic acid (0.12 g, 0.79 mmol), DMAP (0.02 g, 0.16 mmol), and ammonium chloride (NH4Cl) (0.04 g, 0.916 mmol) were mixed thoroughly in a CEM-sealed vial with a magnetic stirrer. The mixture was heated for 10 min at 423 K in a CEM Discover microwave powered at 150 W. It was then cooled rapidly to 313 K and dissolved in 15 ml of (1:1) ethyl acetate: acetone. The organic layer was washed with 2x (10 ml) distilled water and dried over sodium sulfate (anhydrous). The organic layer was concentrated under vacuum and precipitated with hexanes (30 ml) affording a white solid, recrystallized from methanol, (0.10 g, 54%). mp 476–478 K; 1H NMR (400 MHz, DMSO-d6), δ (p.p.m.): 11.06 (s, 1 H, NH), 4.95 (dd, 1 H, 12.5, 5.5 Hz), 2.84 (m, 2 H), 2.52 (m, 4 H,), 2.02 (m, 2 H), 1.92 (m, 2 H); 13C NMR (100 MHz, DMSO-d6) δ (p.p.m.): 179.0(C=O), 172.7(C=O), 169.4(C=O), 49.1(CH), 37.9(CH), 37.7(CH), 30.7(CH), 22.3(CH2), 22.0(CH2), 21.0(CH2); MS m/z 236 (M+) 208, 151, 106, 112, 96, 83, 55, 41; IR (nujol) (νmax, cm-1): 3207.48, 1702.55, 1729.09, 1771.79 (C=O).
The H atoms were placed in their calculated positions and then refined using the riding model with C(N)—H = 0.88 to 1.00 Å, and with Uiso(H) = 1.18–1.21Ueq(C,N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of C11H12N2O4, showing the atom numbering scheme and 50% probability displacement ellipsoids. | |
Fig. 2. The molecular packing for C11H12N2O4 viewed down the b axis. Dashed lines indicate C–H···O and N–H···O intermolecular hydrogen bonds. |
C11H12N2O4 | F(000) = 496 |
Mr = 236.23 | Dx = 1.481 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 4629 reflections |
a = 10.7332 (7) Å | θ = 4.9–32.6° |
b = 9.9358 (5) Å | µ = 0.11 mm−1 |
c = 11.0753 (7) Å | T = 200 K |
β = 116.201 (8)° | Prism, colorless |
V = 1059.75 (13) Å3 | 0.57 × 0.34 × 0.19 mm |
Z = 4 |
Oxford Diffraction Gemini diffractometer | 3496 independent reflections |
Radiation source: fine-focus sealed tube | 2193 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 32.5°, θmin = 4.9° |
ϕ and ω scans | h = −14→16 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −14→13 |
Tmin = 0.866, Tmax = 0.975 | l = −15→15 |
10798 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0607P)2] where P = (Fo2 + 2Fc2)/3 |
3496 reflections | (Δ/σ)max < 0.001 |
154 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C11H12N2O4 | V = 1059.75 (13) Å3 |
Mr = 236.23 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 10.7332 (7) Å | µ = 0.11 mm−1 |
b = 9.9358 (5) Å | T = 200 K |
c = 11.0753 (7) Å | 0.57 × 0.34 × 0.19 mm |
β = 116.201 (8)° |
Oxford Diffraction Gemini diffractometer | 3496 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2193 reflections with I > 2σ(I) |
Tmin = 0.866, Tmax = 0.975 | Rint = 0.025 |
10798 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.28 e Å−3 |
3496 reflections | Δρmin = −0.25 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.32277 (8) | 0.13630 (8) | 0.42230 (7) | 0.0271 (2) | |
O2 | 0.04309 (9) | 0.50429 (9) | 0.26752 (8) | 0.0372 (2) | |
O3 | 0.02024 (7) | 0.12103 (8) | 0.39189 (7) | 0.02458 (19) | |
O4 | 0.16813 (8) | 0.16581 (9) | 0.83857 (8) | 0.0350 (2) | |
N1 | 0.18201 (8) | 0.32243 (9) | 0.37104 (8) | 0.0196 (2) | |
N2 | 0.10433 (9) | 0.14479 (9) | 0.61681 (8) | 0.0222 (2) | |
H2B | 0.0683 | 0.0660 | 0.6195 | 0.027* | |
C1 | 0.25634 (10) | 0.22276 (11) | 0.34235 (10) | 0.0211 (2) | |
C2 | 0.23146 (11) | 0.24120 (12) | 0.19918 (11) | 0.0258 (3) | |
H2A | 0.3154 | 0.2315 | 0.1827 | 0.031* | |
C3 | 0.09860 (12) | 0.16602 (13) | 0.09668 (11) | 0.0340 (3) | |
H3A | 0.1154 | 0.1076 | 0.0330 | 0.041* | |
H3B | 0.0487 | 0.1164 | 0.1396 | 0.041* | |
C4 | 0.03228 (13) | 0.30239 (14) | 0.03642 (11) | 0.0357 (3) | |
H4A | −0.0594 | 0.3172 | 0.0355 | 0.043* | |
H4B | 0.0281 | 0.3205 | −0.0532 | 0.043* | |
C5 | 0.15349 (12) | 0.37539 (12) | 0.15340 (11) | 0.0278 (3) | |
H5A | 0.2019 | 0.4464 | 0.1259 | 0.033* | |
C6 | 0.11702 (11) | 0.41346 (11) | 0.26561 (10) | 0.0240 (2) | |
C7 | 0.15765 (10) | 0.31947 (11) | 0.49000 (10) | 0.0190 (2) | |
H7A | 0.0905 | 0.3931 | 0.4805 | 0.023* | |
C8 | 0.08854 (9) | 0.18701 (11) | 0.49330 (10) | 0.0188 (2) | |
C9 | 0.17118 (10) | 0.21274 (12) | 0.73885 (10) | 0.0234 (2) | |
C10 | 0.24295 (11) | 0.34041 (11) | 0.73556 (10) | 0.0249 (2) | |
H10A | 0.3260 | 0.3520 | 0.8228 | 0.030* | |
H10B | 0.1799 | 0.4172 | 0.7239 | 0.030* | |
C11 | 0.28713 (10) | 0.34228 (11) | 0.62276 (10) | 0.0220 (2) | |
H11A | 0.3561 | 0.2704 | 0.6369 | 0.026* | |
H11B | 0.3300 | 0.4300 | 0.6209 | 0.026* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0272 (4) | 0.0236 (4) | 0.0302 (4) | 0.0056 (3) | 0.0125 (3) | 0.0028 (3) |
O2 | 0.0488 (5) | 0.0302 (5) | 0.0331 (4) | 0.0158 (4) | 0.0185 (4) | 0.0085 (4) |
O3 | 0.0235 (4) | 0.0233 (4) | 0.0256 (4) | −0.0044 (3) | 0.0096 (3) | −0.0028 (3) |
O4 | 0.0448 (5) | 0.0383 (5) | 0.0276 (4) | −0.0018 (4) | 0.0211 (4) | 0.0041 (4) |
N1 | 0.0226 (4) | 0.0176 (5) | 0.0209 (4) | 0.0009 (3) | 0.0117 (3) | 0.0022 (4) |
N2 | 0.0252 (4) | 0.0186 (5) | 0.0252 (4) | −0.0048 (3) | 0.0134 (4) | 0.0012 (4) |
C1 | 0.0196 (5) | 0.0198 (5) | 0.0263 (5) | −0.0028 (4) | 0.0124 (4) | −0.0009 (4) |
C2 | 0.0295 (6) | 0.0251 (6) | 0.0279 (5) | −0.0016 (4) | 0.0174 (5) | −0.0016 (5) |
C3 | 0.0441 (7) | 0.0330 (7) | 0.0254 (6) | −0.0064 (5) | 0.0158 (5) | −0.0041 (5) |
C4 | 0.0385 (7) | 0.0436 (8) | 0.0218 (5) | 0.0015 (6) | 0.0103 (5) | 0.0005 (5) |
C5 | 0.0347 (6) | 0.0256 (6) | 0.0255 (5) | −0.0027 (5) | 0.0155 (5) | 0.0034 (5) |
C6 | 0.0265 (5) | 0.0203 (6) | 0.0238 (5) | −0.0007 (4) | 0.0098 (4) | 0.0032 (4) |
C7 | 0.0203 (5) | 0.0170 (5) | 0.0217 (5) | 0.0004 (4) | 0.0110 (4) | 0.0008 (4) |
C8 | 0.0156 (4) | 0.0195 (5) | 0.0224 (5) | 0.0016 (4) | 0.0093 (4) | 0.0013 (4) |
C9 | 0.0226 (5) | 0.0247 (6) | 0.0248 (5) | 0.0025 (4) | 0.0122 (4) | 0.0012 (5) |
C10 | 0.0294 (5) | 0.0217 (6) | 0.0225 (5) | −0.0019 (4) | 0.0105 (4) | −0.0023 (4) |
C11 | 0.0215 (5) | 0.0193 (5) | 0.0248 (5) | −0.0030 (4) | 0.0099 (4) | −0.0014 (4) |
O1—C1 | 1.2136 (13) | C3—H3B | 0.9900 |
O2—C6 | 1.2080 (13) | C4—C5 | 1.5520 (16) |
O3—C8 | 1.2253 (12) | C4—H4A | 0.9900 |
O4—C9 | 1.2125 (13) | C4—H4B | 0.9900 |
N1—C1 | 1.3936 (14) | C5—C6 | 1.5069 (16) |
N1—C6 | 1.3959 (13) | C5—H5A | 1.0000 |
N1—C7 | 1.4523 (13) | C7—C8 | 1.5191 (15) |
N2—C8 | 1.3679 (13) | C7—C11 | 1.5298 (13) |
N2—C9 | 1.3933 (13) | C7—H7A | 1.0000 |
N2—H2B | 0.8800 | C9—C10 | 1.4929 (16) |
C1—C2 | 1.4984 (15) | C10—C11 | 1.5195 (15) |
C2—C5 | 1.5364 (17) | C10—H10A | 0.9900 |
C2—C3 | 1.5654 (15) | C10—H10B | 0.9900 |
C2—H2A | 1.0000 | C11—H11A | 0.9900 |
C3—C4 | 1.5390 (18) | C11—H11B | 0.9900 |
C3—H3A | 0.9900 | ||
C1—N1—C6 | 113.25 (9) | C6—C5—H5A | 115.6 |
C1—N1—C7 | 122.88 (8) | C2—C5—H5A | 115.6 |
C6—N1—C7 | 123.25 (9) | C4—C5—H5A | 115.6 |
C8—N2—C9 | 127.22 (9) | O2—C6—N1 | 123.98 (10) |
C8—N2—H2B | 116.4 | O2—C6—C5 | 127.86 (10) |
C9—N2—H2B | 116.4 | N1—C6—C5 | 108.14 (9) |
O1—C1—N1 | 123.21 (9) | N1—C7—C8 | 108.95 (8) |
O1—C1—C2 | 129.16 (10) | N1—C7—C11 | 114.71 (8) |
N1—C1—C2 | 107.57 (9) | C8—C7—C11 | 110.57 (8) |
C1—C2—C5 | 105.78 (9) | N1—C7—H7A | 107.4 |
C1—C2—C3 | 112.87 (9) | C8—C7—H7A | 107.4 |
C5—C2—C3 | 89.18 (8) | C11—C7—H7A | 107.4 |
C1—C2—H2A | 115.3 | O3—C8—N2 | 120.82 (10) |
C5—C2—H2A | 115.3 | O3—C8—C7 | 122.84 (9) |
C3—C2—H2A | 115.3 | N2—C8—C7 | 116.33 (9) |
C4—C3—C2 | 89.61 (9) | O4—C9—N2 | 119.20 (10) |
C4—C3—H3A | 113.7 | O4—C9—C10 | 124.80 (10) |
C2—C3—H3A | 113.7 | N2—C9—C10 | 116.00 (9) |
C4—C3—H3B | 113.7 | C9—C10—C11 | 112.47 (9) |
C2—C3—H3B | 113.7 | C9—C10—H10A | 109.1 |
H3A—C3—H3B | 111.0 | C11—C10—H10A | 109.1 |
C3—C4—C5 | 89.58 (8) | C9—C10—H10B | 109.1 |
C3—C4—H4A | 113.7 | C11—C10—H10B | 109.1 |
C5—C4—H4A | 113.7 | H10A—C10—H10B | 107.8 |
C3—C4—H4B | 113.7 | C10—C11—C7 | 107.91 (9) |
C5—C4—H4B | 113.7 | C10—C11—H11A | 110.1 |
H4A—C4—H4B | 111.0 | C7—C11—H11A | 110.1 |
C6—C5—C2 | 104.34 (9) | C10—C11—H11B | 110.1 |
C6—C5—C4 | 112.24 (10) | C7—C11—H11B | 110.1 |
C2—C5—C4 | 90.21 (9) | H11A—C11—H11B | 108.4 |
C6—N1—C1—O1 | 178.13 (10) | C2—C5—C6—O2 | −171.68 (11) |
C7—N1—C1—O1 | −10.65 (15) | C4—C5—C6—O2 | −75.45 (15) |
C6—N1—C1—C2 | −4.49 (11) | C2—C5—C6—N1 | 7.10 (11) |
C7—N1—C1—C2 | 166.72 (9) | C4—C5—C6—N1 | 103.32 (11) |
O1—C1—C2—C5 | −174.12 (11) | C1—N1—C7—C8 | −55.34 (12) |
N1—C1—C2—C5 | 8.72 (11) | C6—N1—C7—C8 | 115.01 (10) |
O1—C1—C2—C3 | 89.96 (14) | C1—N1—C7—C11 | 69.19 (12) |
N1—C1—C2—C3 | −87.20 (11) | C6—N1—C7—C11 | −120.47 (10) |
C1—C2—C3—C4 | 115.83 (10) | C9—N2—C8—O3 | −175.72 (9) |
C5—C2—C3—C4 | 9.02 (9) | C9—N2—C8—C7 | 3.25 (15) |
C2—C3—C4—C5 | −8.93 (9) | N1—C7—C8—O3 | −24.63 (13) |
C1—C2—C5—C6 | −9.47 (11) | C11—C7—C8—O3 | −151.56 (9) |
C3—C2—C5—C6 | 104.11 (9) | N1—C7—C8—N2 | 156.42 (9) |
C1—C2—C5—C4 | −122.52 (9) | C11—C7—C8—N2 | 29.49 (12) |
C3—C2—C5—C4 | −8.94 (9) | C8—N2—C9—O4 | 174.97 (10) |
C3—C4—C5—C6 | −96.51 (11) | C8—N2—C9—C10 | −5.28 (15) |
C3—C4—C5—C2 | 9.10 (9) | O4—C9—C10—C11 | 153.52 (11) |
C1—N1—C6—O2 | 177.01 (10) | N2—C9—C10—C11 | −26.21 (13) |
C7—N1—C6—O2 | 5.83 (16) | C9—C10—C11—C7 | 56.95 (12) |
C1—N1—C6—C5 | −1.83 (11) | N1—C7—C11—C10 | 178.27 (9) |
C7—N1—C6—C5 | −173.01 (9) | C8—C7—C11—C10 | −58.05 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3i | 0.88 | 2.06 | 2.9426 (12) | 175 |
C5—H5A···O4ii | 1.00 | 2.52 | 3.4424 (15) | 153 |
C10—H10B···O2iii | 0.99 | 2.56 | 3.4228 (14) | 146 |
C11—H11B···O3ii | 0.99 | 2.53 | 3.5026 (13) | 167 |
C11—H11B···O1ii | 0.99 | 2.53 | 3.1072 (14) | 117 |
C3—H3A···O4iv | 0.99 | 2.52 | 3.2577 (15) | 131 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C11H12N2O4 |
Mr | 236.23 |
Crystal system, space group | Monoclinic, P21/a |
Temperature (K) | 200 |
a, b, c (Å) | 10.7332 (7), 9.9358 (5), 11.0753 (7) |
β (°) | 116.201 (8) |
V (Å3) | 1059.75 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.57 × 0.34 × 0.19 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.866, 0.975 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10798, 3496, 2193 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.756 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.108, 0.99 |
No. of reflections | 3496 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.25 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2B···O3i | 0.88 | 2.06 | 2.9426 (12) | 174.9 |
C5—H5A···O4ii | 1.00 | 2.52 | 3.4424 (15) | 152.6 |
C10—H10B···O2iii | 0.99 | 2.56 | 3.4228 (14) | 145.8 |
C11—H11B···O3ii | 0.99 | 2.53 | 3.5026 (13) | 166.8 |
C11—H11B···O1ii | 0.99 | 2.53 | 3.1072 (14) | 116.6 |
C3—H3A···O4iv | 0.99 | 2.52 | 3.2577 (15) | 130.9 |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y+1/2, −z+1; (iii) −x, −y+1, −z+1; (iv) x, y, z−1. |
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Carson, K. G., Jaffee, B. D. & Harriman, G. C. B. (2004). Annu. Rep. Med. Chem. 39, 149–158. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Muller, G. W. & Man, H.-W. (2008). PCT Int. Appl. PIXXD2 WO 2008039489 A2 20080403. Google Scholar
Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC, Holland, Michigan, USA, 2007. http://www.webmo.net Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Werbel, L. M., Elslager, E. F., Fisher, M. W., Gavrilis, Z. B. & Phillips, A. A. (1968). J. Med. Chem. 11, 411–419. CrossRef CAS PubMed Web of Science Google Scholar
Yamamoto, T., Shibata, N., Takashima, M., Nakamura, S., Toru, T., Matsunaga, N. & Hara, H. (2008). Org. Biomol. Chem. 6, 1540–1543. Web of Science CrossRef PubMed CAS Google Scholar
Zeldis, J. B. (2008). PCT Int. Appl. PIXXD2. WO 2008019065, A1 20080214, CAN 148:230111, AN 2008:191687. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and biological evaluation of the title compound, 3-(2,6-dioxopiperidine-3-yl)-3-azabicyclo[3.2.0]heptane-2,4-dione and its analogues is of interest to synthetic medicinal chemists. Specifically, piperidine 2,6-dione derivatives, including those of phthalimide, are important anti-angiogenic and immunomodulative agents used for the treatment of many diseases including multiple myeloma, (Muller & Man, 2008; Yamamoto et al., 2008; Zeldis, 2008), Chron's disease (Carson et al., 2004), and leprosy (Werbel et al., 1968). The title molecule, C11H12N2O4, a piperidine 2,6-dione derivative, consists of an azabicyclo[3.2.0]heptane group containing a nearly planar cyclobutane ring, fused to a pyrrolidine ring, bonded to a 2,6-dioxopiperidine ring at the 3 position. The six-membered dioxopiperidine ring (N2–C8–C7–C11–C10–C9) is a slightly distorted envelope, with Cremer & Pople (1975) puckering parameters Q, θ and ϕ of 0.5187 (12) Å, 56.12 (13)° and 176.55 (16)°, respectively. The 5-membered pyrrolidine group (N1/C2–C6) has also a slightly distorted envelope conformation with puckering parameters Q(2)and ϕ(2) of 0.0940 (13) Å, 82.9 (7)° respectively. For an ideal envelope θ has a value of 0 or 180° and θ(2) has a value of 72. The angle between the mean planes of the cyclobutane and fused pyrrolidine ring is 67.6 (6)° (Fig. 1). The mean planes of the pyrrolidine and cyclobutane rings make an angle of 73.9 (2)° and 62.4 (4)° with the dihedral angle of the dioxopiperidine ring, respectively. The pyrrolidine and dioxopiperidine rings are twisted about the 3-yl group [torsion angles = -55.0 (1)° (C1—N1—C7—C8) and 115.0 (1)° (C6—N1—C7—C8)] in a nearly perpendicular manner.
Crystal packing is influenced by extensive intermolecular C–H···O hydrogen bonding between all four carbonyl oxygen atoms [O1, O2, O3, O4] and hydrogen atoms from the cyclobutane (H3A & H5A) and dioxopiperidine rings (H10B & H11B) as well as by N–H···O intermolecular interactions. As a result the molecules are linked into infinite chains diagonally along the [101] plane of the unit cell in an alternate inverted pattern (Fig. 2). In addition, weak C-H··· π-ring interactions also occur between hydrogen atoms from the cyclobutane ring [H3B] and the 5-membered pyrrolidine ring [C3–H3B···Cg2; H3B···Cg2 = 2.50 Å, C3–H3B···Cg2 = 64°, C3···Cg2–H3B = 2.2475 (13) Å, x,y,z, where Cg2 = center of gravity of the N1/C1/C2/C5/C6 ring].
After a MOPAC AMI calculation [Austin Model 1 approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were terminnated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] with WebMO Pro (Schmidt & Polik, 2007), the mean planes of the cyclopropane and pyrrolidine rings became completely planar in the local minimized structure and the dihedral angle between these rings became 64.3 (8)°. The angle between the mean planes of the pyrrolidine and cyclobutane rings and the dihedral angle of the dioxopiperidine ring became 73.9 (2)° and 62.4 (4)°, respectively. The twist of the pyrrolidine and dioxopiperidine rings about the 3-yl group became more perpendicuar to each other after this geometry minimization [torsion angles = -68.6 (6)° (C1—N1—C7—C8) and 100.4 (1)° (C6—N1—C7—C8)]. Thus it is apparent that the extensive hydrogen bonding and π-ring intermolecular interactions significantly influence crystal packing for this molecule.