organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(Di­methyl­amino)benzyl­­idene]thio­semicarbazide

aAnalytical and Testing Center of Beihua Univerisity, Jilin 132013, People's Republic of China, and bDepartment of Chemistry, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: wdq@lcu.edu.cn

(Received 28 November 2008; accepted 23 December 2008; online 8 January 2009)

In the title mol­ecule, C10H14N4S, the thio­rea plane and benzene ring form a dihedral angle of 16.0 (3) Å. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link the mol­ecules into ribbons extended in the [100] direction; these incorporate inversion dimers.

Related literature

For the biomedical properties of thio­semicarbazones, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini - Rev. Med. Chem. 4, 31-39.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]). For the crystal structure of the related compound benzyl N′-(2-chloro­benzyl­idene)hydrazinecarbodithio­ate, see Shi et al. (2008[Shi, Z.-Q., Ji, N.-N. & Ji, Q.-Q. (2008). Acta Cryst. E64, o2249.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14N4S

  • Mr = 222.31

  • Monoclinic, P 21 /n

  • a = 5.6984 (13) Å

  • b = 8.9493 (14) Å

  • c = 22.813 (2) Å

  • β = 93.860 (2)°

  • V = 1160.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 298 (2) K

  • 0.50 × 0.48 × 0.26 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.937

  • 5769 measured reflections

  • 2047 independent reflections

  • 1435 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.02

  • 2047 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯S1i 0.86 2.84 3.408 (2) 125
N3—H3B⋯S1ii 0.86 2.57 3.417 (2) 168
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) is a derivative of thiosemicarbazones, which are important for drug design (Beraldo & Gambino, 2004) and for synthesis of heterocyclic rings (Bondock et al., 2007).

In (I) (Fig.1), all bond lengths and angles are normal and comparable to those observed in the related compound (Shi et al., 2008). The dihedral angle between the C9/C10/N4 plane and the benzene ring is 10.14 (3) °. The thiorea plane and benzene ring form a dihedral angle of 15.97 (3) °. The C1=S1 bond length of 1.674 (2) Å is intermediate between the values of 1.82 Å for a C—S single bond and 1.56 Å for a C=S double bond. The C=N—N angle in the molecule of 115.69 (19)° is significantly smaller than the ideal value of 120° expected for sp2 -hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N bonds.

In the crystal, the intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into ribbons extended in direction [100].

Related literature top

For the biomedical properties of thiosemicarbazones, see: Beraldo & Gambino (2004); Bondock et al. (2007). For the crystal structure of related benzyl N'-(2-chlorobenzylidene)hydrazinecarbodithioate, see Shi et al. (2008).

Experimental top

N,N' –Dimethylaminobenzaldehyde (0.5 mmol), thiosemicarbazide (0.5 mmol) and 10 ml e thanol were mixed in 50 ml flask. After stirring 30 min at 373 K, the resulting mixture was recrystalized from ethanol, affording the title compound as a orange crystalline solid. Elemental analysis: calculated for C10H14N4S: C 54.03, H 6.35, N 25.20%; found: C 54.38, H 6.54, N 25.27%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H= 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.
(E)-1-[4-(Dimethylamino)benzylidene]thiosemicarbazide top
Crystal data top
C10H14N4SF(000) = 472
Mr = 222.31Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6984 (13) ÅCell parameters from 2093 reflections
b = 8.9493 (14) Åθ = 2.5–25.9°
c = 22.813 (2) ŵ = 0.25 mm1
β = 93.860 (2)°T = 298 K
V = 1160.7 (3) Å3Block, orange
Z = 40.50 × 0.48 × 0.26 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2047 independent reflections
Radiation source: fine-focus sealed tube1435 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.884, Tmax = 0.937k = 1010
5769 measured reflectionsl = 2717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.4004P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2047 reflectionsΔρmax = 0.17 e Å3
137 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C10H14N4SV = 1160.7 (3) Å3
Mr = 222.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.6984 (13) ŵ = 0.25 mm1
b = 8.9493 (14) ÅT = 298 K
c = 22.813 (2) Å0.50 × 0.48 × 0.26 mm
β = 93.860 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2047 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1435 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.937Rint = 0.037
5769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.02Δρmax = 0.17 e Å3
2047 reflectionsΔρmin = 0.20 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9364 (3)0.1808 (2)0.14592 (8)0.0544 (5)
H11.04420.23900.16110.065*
N20.7454 (3)0.1467 (2)0.17756 (8)0.0497 (5)
N30.7772 (3)0.0474 (2)0.06910 (8)0.0583 (6)
H3A0.65480.03490.08870.070*
H3B0.78200.00930.03460.070*
N40.0633 (3)0.1090 (2)0.39241 (9)0.0621 (6)
S11.20240 (11)0.15551 (9)0.05735 (3)0.0708 (3)
C10.9570 (4)0.1249 (2)0.09195 (9)0.0473 (5)
C20.7371 (4)0.2136 (3)0.22678 (9)0.0510 (6)
H20.85390.28290.23740.061*
C30.5554 (4)0.1872 (2)0.26677 (9)0.0470 (5)
C40.5549 (4)0.2699 (3)0.31838 (10)0.0560 (6)
H40.66760.34410.32530.067*
C50.3937 (4)0.2457 (3)0.35945 (10)0.0573 (6)
H50.39850.30440.39320.069*
C60.2228 (4)0.1346 (2)0.35143 (9)0.0483 (5)
C70.2210 (4)0.0514 (3)0.29886 (9)0.0528 (6)
H70.10820.02260.29160.063*
C80.3831 (4)0.0782 (3)0.25809 (9)0.0507 (6)
H80.37710.02170.22380.061*
C90.1011 (4)0.0139 (3)0.38610 (12)0.0684 (7)
H9A0.18770.00740.34860.103*
H9B0.20820.00920.41680.103*
H9C0.01660.10670.38870.103*
C100.0832 (6)0.1853 (3)0.44832 (12)0.0900 (10)
H10A0.21930.14950.47110.135*
H10B0.05490.16640.46900.135*
H10C0.09840.29080.44190.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0517 (11)0.0650 (13)0.0474 (11)0.0059 (9)0.0093 (9)0.0067 (10)
N20.0506 (10)0.0566 (12)0.0425 (10)0.0063 (9)0.0089 (8)0.0035 (9)
N30.0458 (10)0.0862 (15)0.0438 (11)0.0059 (10)0.0098 (8)0.0078 (10)
N40.0661 (12)0.0674 (14)0.0547 (12)0.0014 (10)0.0186 (10)0.0096 (10)
S10.0521 (4)0.0967 (6)0.0658 (5)0.0157 (3)0.0204 (3)0.0145 (4)
C10.0442 (12)0.0545 (14)0.0433 (12)0.0065 (10)0.0034 (9)0.0047 (10)
C20.0608 (13)0.0469 (13)0.0454 (13)0.0028 (11)0.0048 (11)0.0003 (10)
C30.0582 (13)0.0433 (13)0.0396 (12)0.0080 (10)0.0041 (10)0.0000 (10)
C40.0701 (15)0.0447 (13)0.0541 (14)0.0055 (11)0.0105 (12)0.0073 (11)
C50.0776 (16)0.0499 (14)0.0455 (13)0.0010 (12)0.0125 (12)0.0134 (11)
C60.0521 (12)0.0480 (13)0.0450 (13)0.0087 (10)0.0042 (10)0.0018 (10)
C70.0521 (12)0.0561 (15)0.0499 (13)0.0030 (11)0.0018 (10)0.0084 (11)
C80.0583 (13)0.0545 (14)0.0389 (12)0.0055 (11)0.0010 (10)0.0095 (10)
C90.0647 (15)0.0705 (17)0.0714 (17)0.0004 (13)0.0154 (13)0.0057 (14)
C100.118 (2)0.088 (2)0.0690 (19)0.0113 (18)0.0441 (17)0.0195 (16)
Geometric parameters (Å, º) top
N1—C11.342 (3)C4—C51.372 (3)
N1—N21.380 (2)C4—H40.9300
N1—H10.8600C5—C61.396 (3)
N2—C21.276 (3)C5—H50.9300
N3—C11.315 (3)C6—C71.411 (3)
N3—H3A0.8600C7—C81.375 (3)
N3—H3B0.8600C7—H70.9300
N4—C61.366 (3)C8—H80.9300
N4—C101.445 (3)C9—H9A0.9600
N4—C91.446 (3)C9—H9B0.9600
S1—C11.674 (2)C9—H9C0.9600
C2—C31.445 (3)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C81.389 (3)C10—H10C0.9600
C3—C41.391 (3)
C1—N1—N2121.22 (18)C4—C5—H5119.5
C1—N1—H1119.4C6—C5—H5119.5
N2—N1—H1119.4N4—C6—C5121.3 (2)
C2—N2—N1115.69 (19)N4—C6—C7121.8 (2)
C1—N3—H3A120.0C5—C6—C7116.9 (2)
C1—N3—H3B120.0C8—C7—C6121.1 (2)
H3A—N3—H3B120.0C8—C7—H7119.5
C6—N4—C10120.6 (2)C6—C7—H7119.5
C6—N4—C9121.0 (2)C7—C8—C3121.8 (2)
C10—N4—C9117.4 (2)C7—C8—H8119.1
N3—C1—N1116.51 (19)C3—C8—H8119.1
N3—C1—S1123.55 (17)N4—C9—H9A109.5
N1—C1—S1119.94 (17)N4—C9—H9B109.5
N2—C2—C3123.3 (2)H9A—C9—H9B109.5
N2—C2—H2118.3N4—C9—H9C109.5
C3—C2—H2118.3H9A—C9—H9C109.5
C8—C3—C4116.9 (2)H9B—C9—H9C109.5
C8—C3—C2123.7 (2)N4—C10—H10A109.5
C4—C3—C2119.3 (2)N4—C10—H10B109.5
C5—C4—C3122.3 (2)H10A—C10—H10B109.5
C5—C4—H4118.9N4—C10—H10C109.5
C3—C4—H4118.9H10A—C10—H10C109.5
C4—C5—C6121.1 (2)H10B—C10—H10C109.5
C1—N1—N2—C2175.76 (19)C9—N4—C6—C5175.0 (2)
N2—N1—C1—N35.8 (3)C10—N4—C6—C7173.9 (2)
N2—N1—C1—S1174.31 (15)C9—N4—C6—C75.8 (3)
N1—N2—C2—C3177.43 (18)C4—C5—C6—N4179.4 (2)
N2—C2—C3—C85.5 (3)C4—C5—C6—C71.4 (3)
N2—C2—C3—C4177.3 (2)N4—C6—C7—C8179.8 (2)
C8—C3—C4—C50.4 (3)C5—C6—C7—C80.9 (3)
C2—C3—C4—C5177.0 (2)C6—C7—C8—C30.2 (3)
C3—C4—C5—C60.7 (4)C4—C3—C8—C70.8 (3)
C10—N4—C6—C56.9 (4)C2—C3—C8—C7176.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.862.843.408 (2)125
N3—H3B···S1ii0.862.573.417 (2)168
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC10H14N4S
Mr222.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.6984 (13), 8.9493 (14), 22.813 (2)
β (°) 93.860 (2)
V3)1160.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.48 × 0.26
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.884, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
5769, 2047, 1435
Rint0.037
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.02
No. of reflections2047
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.862.843.408 (2)125.0
N3—H3B···S1ii0.862.573.417 (2)168.4
Symmetry codes: (i) x1, y, z; (ii) x+2, y, z.
 

Acknowledgements

The authors acknowledge the financial support of the University Student Science and Technology Culture Foundation of Liaocheng University (grant No. SRT07012HX2).

References

First citationBeraldo, H. & Gambino, D. (2004). Mini - Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N. & Ji, Q.-Q. (2008). Acta Cryst. E64, o2249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds