metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­tri­methyl­tin(IV)]-{[tri­methyl­tin(IV)]-μ3-thio­phene-2,5-di­carboxyl­ato}]

aHuai Nan Union University, Huainan, Anhui 232038, People's Republic of China
*Correspondence e-mail: yang_shengxiang@126.com

(Received 5 December 2008; accepted 22 December 2008; online 8 January 2009)

In the title compound, [Sn2(CH3)6(C6H2O4S)(H2O)]n, each of the two crystallographically independent Sn atoms exhibits a distorted trigonal–bipyramidal coordination geometry formed by two O and three C atoms. The coordinated water mol­ecule plays an important role in crystal packing consolidation via O—H⋯O hydrogen bonding.

Related literature

For related structures, see: Prabusankar & Murugavel (2004[Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644-5647.]); Bhandari et al. (1998[Bhandari, S., Mahon, M., McGinley, J., Molloy, K. & Roper, C. (1998). J. Chem. Soc. Dalton Trans. pp. 3425-3430.]); Ma et al. (2006[Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713-1721.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn2(CH3)6(C6H2O4S)(H2O)]

  • Mr = 515.74

  • Monoclinic, P 21

  • a = 7.2761 (16) Å

  • b = 10.467 (2) Å

  • c = 12.894 (3) Å

  • β = 102.768 (2)°

  • V = 957.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.408, Tmax = 0.585 (expected range = 0.383–0.549)

  • 4866 measured reflections

  • 3204 independent reflections

  • 2950 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.067

  • S = 1.03

  • 3204 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.41 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1631 Friedel pairs

  • Flack parameter: −0.06 (3)

Table 1
Selected bond lengths (Å)

Sn1—C9 2.114 (7)
Sn1—C7 2.117 (7)
Sn1—C8 2.120 (8)
Sn1—O1 2.135 (5)
Sn1—O2i 2.641 (5)
Sn2—C10 2.108 (7)
Sn2—C12 2.108 (7)
Sn2—C11 2.114 (7)
Sn2—O3 2.178 (4)
Sn2—O5 2.495 (5)
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O3ii 0.85 (8) 2.38 (8) 3.050 (7) 136 (7)
O5—H2⋯O4iii 0.85 (7) 1.98 (8) 2.765 (6) 153 (7)
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x, y-{\script{1\over 2}}, -z+2].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Prabusankar et al., 2004). From the coordinated viewpoint, those dicarboxylate ligands with additional donor atoms, has been revealed to help the construction of interesting topologies (Bhandari et al., 1998). Herein, we report the structure of the title complex, (I).

The title compound (Fig.1) forms an extended one-dimensional chain structure along the b axis arising from Sn—O bridges to ligands. The Sn1 atom has distorted trigonal-bipyramidal geometry, with atoms O1 and O2 in axial positions [O1—Sn1—O2(1 - x, y + 1/2, 1 - z) = 172.06 (17) °] and the C atoms of the three methyl groups in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 357.9 (4) °, indicating approximate coplanarity for these atoms; and the Sn1—O1 distance 2.135 (5) Å and Sn1—O2i distance 2.641 (5) Å (Table 1), are close to the reported values for organotin compounds (Ma et al., 2006). The environment of the Sn2 atom is approximate to Sn1.

Related literature top

For related structures, see: Prabusankar et al. (2004); Bhandari et al. (1998); Ma et al. (2006).

Experimental top

The reaction was carried out under nitrogen atmosphere. Thiophenn-2,5-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (2 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks of compound (yield 82%. m.p.463k). Anal. Calcd (%) for C12H22O5SSn2 (Mr = 515.74): C, 27.94; H, 4.30; Found (%): C, 27.65; H, 4.57.

Refinement top

C-bound H atoms were geometrically positioned [C–H 0.93–0.96 Å] and treated as riding, with Uiso(H) = 1.2–1.5Ueq(C). Atoms H1 and H2 were located on a difference Fourier map and refined with bond restraints O–H=0.85 (7) Å and constrained Uiso(H) = 1.1Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric chain of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. One-dimensional polymeric chain in the title compound.
catena-Poly[[aquatrimethyltin(IV)]-{[trimethyltin(IV)]-µ3-thiophene- 2,5-dicarboxylato}] top
Crystal data top
[Sn2(CH3)6(C6H2O4S)(H2O)]F(000) = 500
Mr = 515.74Dx = 1.788 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.2761 (16) ÅCell parameters from 3167 reflections
b = 10.467 (2) Åθ = 2.5–27.3°
c = 12.894 (3) ŵ = 2.73 mm1
β = 102.768 (2)°T = 298 K
V = 957.7 (4) Å3Block, colourless
Z = 20.40 × 0.30 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Radiation source: fine-focus sealed tube2950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.408, Tmax = 0.585k = 1212
4866 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4614P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3204 reflectionsΔρmax = 0.40 e Å3
193 parametersΔρmin = 0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1631 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
[Sn2(CH3)6(C6H2O4S)(H2O)]V = 957.7 (4) Å3
Mr = 515.74Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.2761 (16) ŵ = 2.73 mm1
b = 10.467 (2) ÅT = 298 K
c = 12.894 (3) Å0.40 × 0.30 × 0.22 mm
β = 102.768 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3204 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2950 reflections with I > 2σ(I)
Tmin = 0.408, Tmax = 0.585Rint = 0.024
4866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067Δρmax = 0.40 e Å3
S = 1.03Δρmin = 0.41 e Å3
3204 reflectionsAbsolute structure: Flack (1983), 1631 Friedel pairs
193 parametersAbsolute structure parameter: 0.06 (3)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.40954 (6)0.66275 (4)0.52089 (3)0.05596 (13)
Sn20.29616 (5)0.21300 (4)0.94966 (3)0.04704 (11)
O10.2935 (8)0.5249 (5)0.6105 (4)0.0697 (13)
O20.4490 (8)0.3555 (5)0.5684 (4)0.0712 (13)
O30.2928 (6)0.0330 (4)0.8646 (3)0.0549 (11)
O40.0302 (6)0.0281 (5)0.9120 (3)0.0620 (12)
O50.3171 (8)0.4236 (5)1.0422 (5)0.0697 (14)
S10.3024 (2)0.17295 (16)0.71215 (11)0.0493 (3)
C10.3378 (10)0.4063 (7)0.6153 (5)0.0571 (16)
C20.2486 (8)0.3306 (5)0.6871 (4)0.0463 (14)
C30.1297 (10)0.3741 (7)0.7489 (6)0.0668 (19)
H30.08500.45750.74680.080*
C40.0833 (9)0.2787 (8)0.8154 (5)0.0638 (16)
H40.00380.29190.86180.077*
C50.1680 (8)0.1643 (7)0.8045 (4)0.0463 (12)
C60.1558 (8)0.0462 (6)0.8644 (4)0.0476 (14)
C70.2903 (11)0.5827 (9)0.3703 (5)0.079 (2)
H7A0.36240.50940.35860.118*
H7B0.29180.64510.31590.118*
H7C0.16270.55740.36810.118*
C80.2492 (14)0.8103 (8)0.5708 (8)0.097 (3)
H8A0.17670.77570.61810.145*
H8B0.16570.84700.50990.145*
H8C0.33240.87520.60720.145*
C90.6959 (10)0.6383 (9)0.5970 (6)0.080 (2)
H9A0.70460.58710.65970.119*
H9B0.75230.72020.61660.119*
H9C0.76100.59640.54950.119*
C100.0317 (9)0.2808 (8)0.8666 (6)0.0686 (19)
H10A0.06300.21770.86890.103*
H10B0.00160.35820.89910.103*
H10C0.03610.29740.79400.103*
C110.5359 (11)0.2714 (8)0.8945 (7)0.084 (3)
H11A0.49870.33130.83740.125*
H11B0.62480.31100.95160.125*
H11C0.59310.19820.86960.125*
C120.3463 (10)0.1258 (7)1.1007 (5)0.0656 (19)
H12A0.25200.06191.10150.098*
H12B0.46860.08671.11560.098*
H12C0.34110.18921.15380.098*
H10.405 (12)0.434 (8)1.097 (6)0.079*
H20.233 (11)0.442 (8)1.076 (6)0.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0634 (3)0.0477 (2)0.0566 (2)0.0046 (2)0.0130 (2)0.0066 (2)
Sn20.03417 (18)0.0448 (2)0.0646 (2)0.00064 (19)0.01612 (16)0.0085 (2)
O10.092 (4)0.042 (3)0.081 (3)0.010 (3)0.033 (3)0.019 (2)
O20.099 (4)0.052 (3)0.073 (3)0.003 (3)0.041 (3)0.002 (2)
O30.051 (2)0.050 (2)0.070 (3)0.013 (2)0.026 (2)0.018 (2)
O40.051 (3)0.066 (3)0.075 (3)0.009 (2)0.028 (2)0.014 (2)
O50.057 (3)0.059 (3)0.099 (4)0.003 (2)0.029 (3)0.023 (3)
S10.0592 (9)0.0388 (8)0.0543 (7)0.0041 (7)0.0223 (7)0.0034 (7)
C10.065 (4)0.054 (4)0.050 (3)0.002 (3)0.008 (3)0.007 (3)
C20.049 (3)0.041 (3)0.047 (3)0.005 (2)0.007 (3)0.006 (2)
C30.069 (5)0.047 (4)0.087 (5)0.019 (3)0.022 (4)0.016 (3)
C40.066 (4)0.055 (4)0.078 (4)0.016 (4)0.034 (3)0.008 (4)
C50.042 (3)0.049 (3)0.049 (3)0.007 (3)0.011 (2)0.002 (3)
C60.040 (3)0.051 (4)0.053 (3)0.004 (3)0.015 (3)0.003 (3)
C70.067 (5)0.098 (7)0.064 (4)0.020 (4)0.000 (4)0.004 (4)
C80.125 (8)0.051 (5)0.135 (8)0.011 (5)0.073 (7)0.012 (5)
C90.070 (5)0.086 (6)0.073 (4)0.002 (4)0.003 (4)0.002 (4)
C100.047 (4)0.075 (5)0.080 (4)0.008 (3)0.004 (3)0.004 (4)
C110.071 (5)0.064 (5)0.133 (7)0.024 (4)0.059 (5)0.025 (5)
C120.060 (4)0.059 (4)0.071 (4)0.005 (3)0.001 (3)0.011 (3)
Geometric parameters (Å, º) top
Sn1—C92.114 (7)C4—C51.368 (10)
Sn1—C72.117 (7)C4—H40.9300
Sn1—C82.120 (8)C5—C61.470 (9)
Sn1—O12.135 (5)C7—H7A0.9600
Sn1—O2i2.641 (5)C7—H7B0.9600
Sn2—C102.108 (7)C7—H7C0.9600
Sn2—C122.108 (7)C8—H8A0.9600
Sn2—C112.114 (7)C8—H8B0.9600
Sn2—O32.178 (4)C8—H8C0.9600
Sn2—O52.495 (5)C9—H9A0.9600
O1—C11.282 (9)C9—H9B0.9600
O2—C11.233 (8)C9—H9C0.9600
O3—C61.296 (7)C10—H10A0.9600
O4—C61.223 (6)C10—H10B0.9600
O5—H10.85 (8)C10—H10C0.9600
O5—H20.85 (7)C11—H11A0.9600
S1—C51.702 (5)C11—H11B0.9600
S1—C21.711 (6)C11—H11C0.9600
C1—C21.474 (9)C12—H12A0.9600
C2—C31.376 (8)C12—H12B0.9600
C3—C41.405 (10)C12—H12C0.9600
C3—H30.9300
C9—Sn1—C7122.7 (3)C6—C5—S1121.5 (5)
C9—Sn1—C8120.0 (4)O4—C6—O3124.0 (6)
C7—Sn1—C8115.2 (4)O4—C6—C5122.2 (6)
C9—Sn1—O197.7 (3)O3—C6—C5113.8 (5)
C7—Sn1—O195.6 (3)Sn1—C7—H7A109.5
C8—Sn1—O191.0 (2)Sn1—C7—H7B109.5
C9—Sn1—O2i81.7 (3)H7A—C7—H7B109.5
C7—Sn1—O2i91.3 (2)Sn1—C7—H7C109.5
C8—Sn1—O2i82.5 (3)H7A—C7—H7C109.5
O1—Sn1—O2i172.06 (17)H7B—C7—H7C109.5
C10—Sn2—C12124.6 (3)Sn1—C8—H8A109.5
C10—Sn2—C11117.4 (4)Sn1—C8—H8B109.5
C12—Sn2—C11116.7 (3)H8A—C8—H8B109.5
C10—Sn2—O397.4 (3)Sn1—C8—H8C109.5
C12—Sn2—O394.1 (2)H8A—C8—H8C109.5
C11—Sn2—O389.9 (2)H8B—C8—H8C109.5
C10—Sn2—O584.1 (3)Sn1—C9—H9A109.5
C12—Sn2—O587.8 (2)Sn1—C9—H9B109.5
C11—Sn2—O586.4 (2)H9A—C9—H9B109.5
O3—Sn2—O5176.36 (17)Sn1—C9—H9C109.5
C1—O1—Sn1123.8 (4)H9A—C9—H9C109.5
C6—O3—Sn2118.5 (4)H9B—C9—H9C109.5
Sn2—O5—H1118 (6)Sn2—C10—H10A109.5
Sn2—O5—H2118 (6)Sn2—C10—H10B109.5
H1—O5—H292 (7)H10A—C10—H10B109.5
C5—S1—C292.3 (3)Sn2—C10—H10C109.5
O2—C1—O1125.4 (6)H10A—C10—H10C109.5
O2—C1—C2120.3 (6)H10B—C10—H10C109.5
O1—C1—C2114.2 (6)Sn2—C11—H11A109.5
C3—C2—C1127.4 (6)Sn2—C11—H11B109.5
C3—C2—S1110.9 (4)H11A—C11—H11B109.5
C1—C2—S1121.5 (5)Sn2—C11—H11C109.5
C2—C3—C4112.6 (6)H11A—C11—H11C109.5
C2—C3—H3123.7H11B—C11—H11C109.5
C4—C3—H3123.7Sn2—C12—H12A109.5
C5—C4—C3112.7 (6)Sn2—C12—H12B109.5
C5—C4—H4123.7H12A—C12—H12B109.5
C3—C4—H4123.7Sn2—C12—H12C109.5
C4—C5—C6126.9 (5)H12A—C12—H12C109.5
C4—C5—S1111.5 (5)H12B—C12—H12C109.5
Symmetry code: (i) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3ii0.85 (8)2.38 (8)3.050 (7)136 (7)
O5—H2···O4iii0.85 (7)1.98 (8)2.765 (6)153 (7)
Symmetry codes: (ii) x+1, y1/2, z+2; (iii) x, y1/2, z+2.

Experimental details

Crystal data
Chemical formula[Sn2(CH3)6(C6H2O4S)(H2O)]
Mr515.74
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)7.2761 (16), 10.467 (2), 12.894 (3)
β (°) 102.768 (2)
V3)957.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.40 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.408, 0.585
No. of measured, independent and
observed [I > 2σ(I)] reflections
4866, 3204, 2950
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.03
No. of reflections3204
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.41
Absolute structureFlack (1983), 1631 Friedel pairs
Absolute structure parameter0.06 (3)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sn1—C92.114 (7)Sn2—C102.108 (7)
Sn1—C72.117 (7)Sn2—C122.108 (7)
Sn1—C82.120 (8)Sn2—C112.114 (7)
Sn1—O12.135 (5)Sn2—O32.178 (4)
Sn1—O2i2.641 (5)Sn2—O52.495 (5)
Symmetry code: (i) x+1, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3ii0.85 (8)2.38 (8)3.050 (7)136 (7)
O5—H2···O4iii0.85 (7)1.98 (8)2.765 (6)153 (7)
Symmetry codes: (ii) x+1, y1/2, z+2; (iii) x, y1/2, z+2.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Huai Nan Union University (No. X051040).

References

First citationBhandari, S., Mahon, M., McGinley, J., Molloy, K. & Roper, C. (1998). J. Chem. Soc. Dalton Trans. pp. 3425–3430.  Web of Science CSD CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem. 691, 1713–1721.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds