organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridine-2-carbaldehyde thio­semi­carbazone

aHuainan Union University, Huainan, Anhui 232038, People's Republic of China, and bAnhui Huainan Environmental Protection Agency, Huainan, Anhui 232038, People's Republic of China
*Correspondence e-mail: yang_shengxiang@126.com

(Received 26 December 2008; accepted 15 January 2009; online 23 January 2009)

The asymmetric unit of the title compound, C7H8N4S, contains two independent mol­ecules with slightly different conformations; the dihedral angles between the pyridine ring and mean plane of the thio­semicarbazone unit in the two mol­ecules are 2.88 (5) and 6.30 (5)°. Inter­molecular N—H⋯N and N—H⋯S hydrogen bonds link the mol­ecules into layers parallel to the ab plane.

Related literature

For the properties of thio­semicarbazones, see: Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). For the crystal structure of a related compound, see: Gu et al. (2008[Gu, S.-J. & Zhu, K.-M. (2008). Acta Cryst. E64, o1597.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N4S

  • Mr = 180.23

  • Orthorhombic, P n a 21

  • a = 20.725 (2) Å

  • b = 4.7857 (6) Å

  • c = 17.393 (2) Å

  • V = 1725.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 (2) K

  • 0.45 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.941

  • 7296 measured reflections

  • 2797 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.165

  • S = 0.96

  • 2797 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.96 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1218 Friedel pairs

  • Flack parameter: 0.02 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N8i 0.86 2.18 3.032 (8) 169
N3—H3B⋯S2ii 0.86 2.57 3.417 (6) 168
N7—H7B⋯S1iii 0.86 2.60 3.455 (7) 172
N5—H5⋯N4 0.86 2.36 3.199 (8) 164
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones have been known for many years to show a broad spectrum of therapeutic properties against a range of diseases, with antibacterial, antimalarial, antiviral and antitumour activities (Beraldo & Gambino, 2004), In this paper, we present the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Gu et al., 2008). The mean planes C10/C11/C12/C13/C14/N8 and C9/N6/N5 form a dihedral angle of 2.88 (5)°, while C3/C4/C5/C6/C7/N4 and C2/N2/N1 form a dihedral angle of 6.30 (5)°.

In the crystal, the intermolecular N—H···N and N—H···S hydrogen bonds (Table 1) link the molecules into layers parallel to ab plane.

Related literature top

For the properties of thiosemicarbazones, see: Beraldo & Gambino (2004). For the crystal structure of related compound, see: Gu et al. (2008).

Experimental top

Pyridine-2-carbaldehyde (0.5 mmol), thiosemicarbazide (0.5 mmol) and 20 ml ethanol were mixed in 50 ml flask. After stirring 30 min at 373 K, the resulting mixture was recrystalized from ethanol, affording the title compound as a orange crystalline solid. Elemental analysis: calculated for C7H8N4S: C 46.65, H 4.47, N 31.09%; found: C46.58, H 4.56, N 31.11%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 Å, C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids. Dashed line denotes hydrogen bond.
Pyridine-2-carbaldehyde thiosemicarbazone top
Crystal data top
C7H8N4SDx = 1.388 Mg m3
Mr = 180.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1607 reflections
a = 20.725 (2) Åθ = 2.3–21.6°
b = 4.7857 (6) ŵ = 0.32 mm1
c = 17.393 (2) ÅT = 298 K
V = 1725.1 (4) Å3Block, orange
Z = 80.45 × 0.20 × 0.19 mm
F(000) = 752
Data collection top
Bruker SMART CCD area-detector
diffractometer
2797 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2420
Tmin = 0.868, Tmax = 0.941k = 55
7296 measured reflectionsl = 2017
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0511P)2 + 6.2026P]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max = 0.001
2797 reflectionsΔρmax = 0.97 e Å3
218 parametersΔρmin = 0.96 e Å3
1 restraintAbsolute structure: Flack (1983), 1218 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (19)
Crystal data top
C7H8N4SV = 1725.1 (4) Å3
Mr = 180.23Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 20.725 (2) ŵ = 0.32 mm1
b = 4.7857 (6) ÅT = 298 K
c = 17.393 (2) Å0.45 × 0.20 × 0.19 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2797 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1951 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.941Rint = 0.059
7296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.97 e Å3
S = 0.96Δρmin = 0.96 e Å3
2797 reflectionsAbsolute structure: Flack (1983), 1218 Friedel pairs
218 parametersAbsolute structure parameter: 0.02 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N80.6201 (3)0.1518 (12)0.5432 (3)0.0387 (14)
N10.5188 (3)0.9637 (13)0.4216 (3)0.0405 (15)
H10.54640.95330.45840.049*
N20.5264 (3)0.8019 (12)0.3566 (3)0.0385 (14)
N30.4295 (3)1.1564 (14)0.3672 (3)0.0514 (18)
H3A0.43761.05910.32670.062*
H3B0.39651.26510.36820.062*
N40.6451 (3)0.3132 (13)0.2989 (3)0.0443 (15)
N50.7451 (3)0.5151 (13)0.4275 (3)0.0411 (14)
H50.72130.48810.38770.049*
N60.7334 (3)0.3664 (12)0.4937 (3)0.0371 (14)
N70.8267 (3)0.7425 (15)0.4879 (4)0.0493 (17)
H7A0.81700.65060.52880.059*
H7B0.85800.86030.48850.059*
S10.45768 (9)1.3182 (4)0.50951 (10)0.0483 (5)
S20.80649 (9)0.8767 (4)0.34251 (11)0.0480 (5)
C10.4677 (3)1.1390 (15)0.4274 (4)0.0352 (16)
C20.5761 (3)0.6438 (14)0.3561 (4)0.0383 (17)
H20.60460.64950.39750.046*
C30.5892 (3)0.4557 (14)0.2926 (4)0.0362 (16)
C40.5478 (3)0.4143 (16)0.2310 (4)0.0438 (18)
H40.50970.51570.22720.053*
C50.5637 (4)0.2228 (17)0.1758 (5)0.054 (2)
H5A0.53670.19440.13380.064*
C60.6199 (4)0.0727 (17)0.1829 (5)0.054 (2)
H60.63100.06230.14680.065*
C70.6591 (4)0.1270 (17)0.2447 (4)0.049 (2)
H70.69760.02830.24880.058*
C80.7935 (3)0.7027 (15)0.4244 (4)0.0365 (17)
C90.6886 (3)0.1868 (15)0.4895 (4)0.0383 (18)
H90.66670.16360.44320.046*
C100.6706 (3)0.0160 (14)0.5554 (4)0.0351 (16)
C110.7028 (4)0.0259 (17)0.6248 (4)0.049 (2)
H110.73750.14610.63170.058*
C120.6825 (4)0.1454 (17)0.6836 (5)0.053 (2)
H120.70300.14080.73110.063*
C130.6313 (3)0.3245 (16)0.6709 (4)0.0471 (19)
H130.61660.44380.70930.057*
C140.6029 (3)0.3205 (17)0.6003 (5)0.047 (2)
H140.56910.44450.59140.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N80.044 (3)0.040 (3)0.033 (3)0.004 (3)0.004 (3)0.003 (3)
N10.044 (3)0.044 (4)0.033 (3)0.003 (3)0.006 (3)0.004 (3)
N20.043 (3)0.039 (3)0.034 (4)0.002 (3)0.003 (3)0.001 (3)
N30.049 (4)0.064 (4)0.041 (4)0.013 (3)0.013 (3)0.018 (3)
N40.043 (3)0.050 (4)0.040 (4)0.002 (3)0.005 (3)0.002 (3)
N50.048 (4)0.047 (4)0.029 (3)0.001 (3)0.002 (3)0.003 (3)
N60.042 (3)0.037 (3)0.032 (4)0.001 (3)0.003 (2)0.007 (3)
N70.053 (3)0.057 (4)0.038 (4)0.014 (3)0.003 (3)0.013 (3)
S10.0529 (10)0.0535 (11)0.0384 (11)0.0042 (10)0.0040 (9)0.0095 (10)
S20.0506 (10)0.0558 (11)0.0377 (10)0.0049 (10)0.0046 (9)0.0140 (10)
C10.035 (4)0.034 (4)0.037 (4)0.006 (3)0.003 (3)0.001 (3)
C20.040 (4)0.040 (4)0.034 (4)0.000 (3)0.003 (3)0.001 (3)
C30.043 (4)0.033 (4)0.033 (4)0.001 (3)0.003 (3)0.001 (3)
C40.040 (4)0.050 (5)0.041 (4)0.010 (4)0.010 (3)0.003 (4)
C50.058 (5)0.061 (5)0.042 (5)0.000 (5)0.014 (4)0.004 (4)
C60.070 (5)0.056 (5)0.038 (5)0.003 (4)0.002 (4)0.008 (4)
C70.044 (4)0.058 (5)0.044 (5)0.008 (4)0.005 (4)0.002 (4)
C80.034 (4)0.037 (4)0.038 (4)0.010 (3)0.000 (3)0.004 (3)
C90.043 (4)0.039 (4)0.033 (4)0.001 (3)0.003 (3)0.002 (3)
C100.039 (4)0.034 (4)0.033 (4)0.000 (3)0.005 (3)0.001 (3)
C110.050 (4)0.056 (5)0.040 (5)0.008 (4)0.011 (3)0.006 (4)
C120.060 (5)0.067 (6)0.031 (4)0.006 (4)0.011 (4)0.006 (4)
C130.048 (4)0.052 (5)0.042 (5)0.001 (4)0.000 (3)0.013 (4)
C140.041 (4)0.050 (5)0.050 (5)0.003 (4)0.002 (3)0.003 (4)
Geometric parameters (Å, º) top
N8—C141.328 (9)C2—C31.450 (9)
N8—C101.336 (8)C2—H20.9300
N1—C11.354 (8)C3—C41.388 (9)
N1—N21.380 (8)C4—C51.367 (10)
N1—H10.8600C4—H40.9300
N2—C21.278 (8)C5—C61.373 (10)
N3—C11.316 (9)C5—H5A0.9300
N3—H3A0.8600C6—C71.372 (10)
N3—H3B0.8600C6—H60.9300
N4—C71.330 (9)C7—H70.9300
N4—C31.348 (8)C9—C101.458 (10)
N5—C81.347 (8)C9—H90.9300
N5—N61.375 (8)C10—C111.379 (9)
N5—H50.8600C11—C121.376 (11)
N6—C91.267 (9)C11—H110.9300
N7—C81.314 (9)C12—C131.382 (10)
N7—H7A0.8600C12—H120.9300
N7—H7B0.8600C13—C141.362 (10)
S1—C11.679 (7)C13—H130.9300
S2—C81.671 (8)C14—H140.9300
C14—N8—C10117.2 (6)C4—C5—H5A120.3
C1—N1—N2119.9 (6)C6—C5—H5A120.3
C1—N1—H1120.1C7—C6—C5118.3 (7)
N2—N1—H1120.1C7—C6—H6120.8
C2—N2—N1115.5 (6)C5—C6—H6120.8
C1—N3—H3A120.0N4—C7—C6123.5 (7)
C1—N3—H3B120.0N4—C7—H7118.2
H3A—N3—H3B120.0C6—C7—H7118.2
C7—N4—C3118.0 (6)N7—C8—N5116.9 (7)
C8—N5—N6120.7 (6)N7—C8—S2124.0 (6)
C8—N5—H5119.7N5—C8—S2119.1 (5)
N6—N5—H5119.7N6—C9—C10121.4 (7)
C9—N6—N5115.6 (6)N6—C9—H9119.3
C8—N7—H7A120.0C10—C9—H9119.3
C8—N7—H7B120.0N8—C10—C11122.6 (7)
H7A—N7—H7B120.0N8—C10—C9114.3 (6)
N3—C1—N1116.8 (6)C11—C10—C9123.1 (7)
N3—C1—S1124.8 (6)C12—C11—C10118.8 (7)
N1—C1—S1118.5 (5)C12—C11—H11120.6
N2—C2—C3121.5 (6)C10—C11—H11120.6
N2—C2—H2119.2C11—C12—C13119.0 (7)
C3—C2—H2119.2C11—C12—H12120.5
N4—C3—C4121.4 (6)C13—C12—H12120.5
N4—C3—C2114.4 (6)C14—C13—C12117.8 (8)
C4—C3—C2124.2 (6)C14—C13—H13121.1
C5—C4—C3119.3 (7)C12—C13—H13121.1
C5—C4—H4120.4N8—C14—C13124.5 (8)
C3—C4—H4120.4N8—C14—H14117.8
C4—C5—C6119.5 (7)C13—C14—H14117.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N8i0.862.183.032 (8)169
N3—H3B···S2ii0.862.573.417 (6)168
N7—H7B···S1iii0.862.603.455 (7)172
N5—H5···N40.862.363.199 (8)164
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+5/2, z; (iii) x+1/2, y+5/2, z.

Experimental details

Crystal data
Chemical formulaC7H8N4S
Mr180.23
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)20.725 (2), 4.7857 (6), 17.393 (2)
V3)1725.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.45 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.868, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
7296, 2797, 1951
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.165, 0.96
No. of reflections2797
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.96
Absolute structureFlack (1983), 1218 Friedel pairs
Absolute structure parameter0.02 (19)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N8i0.862.183.032 (8)169.2
N3—H3B···S2ii0.862.573.417 (6)167.5
N7—H7B···S1iii0.862.603.455 (7)171.5
N5—H5···N40.862.363.199 (8)164.4
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+5/2, z; (iii) x+1/2, y+5/2, z.
 

Acknowledgements

This project was supported by the Foundation of Huainan Union University (grant No. HNU0801).

References

First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGu, S.-J. & Zhu, K.-M. (2008). Acta Cryst. E64, o1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds