organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,4-Di­hydroxy­benzyl­­idene)di­methyl­ammonium di­chloro­phosphinate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xuhj@seu.edu.cn

(Received 31 December 2008; accepted 15 January 2009; online 23 January 2009)

In the title compound, C9H12NO2+·Cl2PO2, the mol­ecular skeleton of the cation is nearly planar with an r.m.s. deviation of 0.0336 Å. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link cations and anions into chains running along [1[\overline{1}]0].

Related literature

For details of the synthesis, see Ramadas & David Krupadanam (2000[Ramadas, S. & David Krupadanam, G. L. (2000). Tetrahedron Asymmetry, 11, 3375-3393.]). For typical values of C=N bond lengths, see Elmah et al. (1999[Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229-234.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO2+·Cl2O2P

  • Mr = 300.07

  • Triclinic, [P \overline 1]

  • a = 7.922 (4) Å

  • b = 8.163 (4) Å

  • c = 11.035 (9) Å

  • α = 100.021 (19)°

  • β = 107.035 (2)°

  • γ = 103.02 (3)°

  • V = 642.3 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.903, Tmax = 1.000 (expected range = 0.796–0.881)

  • 6473 measured reflections

  • 2898 independent reflections

  • 2374 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.06

  • 2898 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.82 1.79 2.609 (3) 180
O2—H2⋯O3ii 0.82 1.83 2.635 (3) 167
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Vilsmeier conditions are important synthetic tool usually utilized in the synthesis of aldehydes . The title compound is a Vilsmeier intermediate synthesized from resorcinol, DMF and POCl3 in dry CH3CN. Here we report its crystal structure.

In the title compound (Fig. 1), all bond lengths are normal. The C7=N1 bond length of 1.288 (3) Å indicates a high degree of double-bond character comparable with the typical values of C=N bond length (Elmah et al., 1999). The two P—O bond lengths are almost equal - 1.4604 (19) and 1.4642 (18) Å, repectively.

In the crystal, the cations and anions are further connected via O–H···O hydrongen bonds into chains running in direction [1-10].

Related literature top

For details of the synthesis, see Ramadas & David Krupadanam (2000). For typical values of C=N bond lengths, see Elmah et al. (1999).

Experimental top

All chemicals were obtained from commercial sources and used without further purification except POCl3 and DMF, which were distiled under reduced pressure before use. The title compound was prepared according to the literature (Ramadas & David Krupadanam, 2000).

Refinement top

All H atoms were geometrically positioned (C—H 0.93-0.96 Å, O—H 0.82 Å) and allowed to ride on the parent atoms, with Uiso(H) = 1.2-1.5 Ueq(C, O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(2,4-Dihydroxybenzylidene)dimethylammonium dichlorophosphinate top
Crystal data top
C9H12NO2+·Cl2O2PZ = 2
Mr = 300.07F(000) = 308
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.922 (4) ÅCell parameters from 1854 reflections
b = 8.163 (4) Åθ = 2.7–27.5°
c = 11.035 (9) ŵ = 0.63 mm1
α = 100.021 (19)°T = 293 K
β = 107.035 (2)°Prism, colourless
γ = 103.02 (3)°0.20 × 0.20 × 0.20 mm
V = 642.3 (7) Å3
Data collection top
Rigaku Mercury2
diffractometer
2898 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.903, Tmax = 1.000l = 1414
6473 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2201P]
where P = (Fo2 + 2Fc2)/3
2898 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C9H12NO2+·Cl2O2Pγ = 103.02 (3)°
Mr = 300.07V = 642.3 (7) Å3
Triclinic, P1Z = 2
a = 7.922 (4) ÅMo Kα radiation
b = 8.163 (4) ŵ = 0.63 mm1
c = 11.035 (9) ÅT = 293 K
α = 100.021 (19)°0.20 × 0.20 × 0.20 mm
β = 107.035 (2)°
Data collection top
Rigaku Mercury2
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2374 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 1.000Rint = 0.020
6473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
2898 reflectionsΔρmin = 0.38 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.07808 (7)0.57775 (7)0.79425 (5)0.04024 (16)
Cl20.01734 (10)0.66505 (10)0.63397 (6)0.0665 (2)
O10.1067 (2)0.88448 (19)0.41735 (15)0.0469 (4)
H1A0.08230.79610.35920.070*
O20.4455 (2)1.1302 (2)0.17313 (15)0.0556 (4)
H20.53841.20720.18250.083*
C10.3561 (2)1.1426 (2)0.52665 (18)0.0340 (4)
N10.3863 (2)1.2128 (2)0.76201 (16)0.0424 (4)
C60.2445 (3)1.0094 (2)0.40992 (19)0.0342 (4)
C50.2758 (3)1.0099 (3)0.29337 (19)0.0382 (4)
H5A0.20070.92310.21790.046*
C70.3111 (3)1.1237 (3)0.6409 (2)0.0394 (4)
H7A0.20871.02990.62510.047*
C30.5312 (3)1.2722 (3)0.4014 (2)0.0424 (5)
H3A0.62671.35960.39800.051*
C40.4190 (3)1.1396 (3)0.28853 (19)0.0388 (4)
C20.4993 (3)1.2723 (3)0.5167 (2)0.0411 (5)
H2A0.57461.36090.59110.049*
C80.5515 (4)1.3646 (4)0.8156 (2)0.0627 (7)
H8A0.57901.40700.90810.094*
H8B0.52931.45450.77290.094*
H8C0.65411.33150.80090.094*
C90.3073 (4)1.1623 (4)0.8600 (2)0.0642 (7)
H9A0.20071.06240.81780.096*
H9B0.27201.25710.89980.096*
H9C0.39771.13450.92610.096*
Cl10.00162 (13)0.72157 (11)0.92482 (8)0.0820 (3)
O40.0294 (3)0.3961 (2)0.76791 (18)0.0643 (5)
O30.2793 (2)0.6276 (3)0.83673 (19)0.0676 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0420 (3)0.0381 (3)0.0372 (3)0.0040 (2)0.0153 (2)0.0083 (2)
Cl20.0797 (5)0.0756 (5)0.0469 (4)0.0299 (4)0.0158 (3)0.0234 (3)
O10.0444 (8)0.0444 (8)0.0439 (8)0.0018 (6)0.0192 (7)0.0040 (6)
O20.0622 (11)0.0637 (11)0.0367 (8)0.0029 (8)0.0235 (7)0.0116 (7)
C10.0336 (9)0.0374 (10)0.0300 (9)0.0116 (8)0.0087 (7)0.0087 (7)
N10.0439 (10)0.0527 (11)0.0315 (9)0.0174 (8)0.0129 (7)0.0091 (7)
C60.0322 (9)0.0349 (9)0.0357 (10)0.0108 (7)0.0110 (7)0.0096 (7)
C50.0402 (10)0.0382 (10)0.0320 (10)0.0094 (8)0.0104 (8)0.0047 (8)
C70.0376 (10)0.0439 (11)0.0362 (10)0.0121 (8)0.0121 (8)0.0098 (8)
C30.0410 (11)0.0408 (11)0.0406 (11)0.0031 (8)0.0132 (9)0.0121 (9)
C40.0427 (11)0.0439 (11)0.0323 (10)0.0138 (8)0.0137 (8)0.0133 (8)
C20.0402 (11)0.0395 (10)0.0349 (10)0.0050 (8)0.0074 (8)0.0067 (8)
C80.0578 (15)0.0714 (17)0.0398 (13)0.0026 (12)0.0120 (11)0.0034 (11)
C90.0794 (18)0.0802 (18)0.0377 (12)0.0198 (14)0.0290 (12)0.0162 (12)
Cl10.1114 (7)0.0773 (5)0.0594 (4)0.0271 (4)0.0444 (4)0.0020 (3)
O40.0824 (13)0.0392 (9)0.0644 (12)0.0028 (8)0.0353 (10)0.0061 (8)
O30.0420 (9)0.0902 (14)0.0699 (12)0.0091 (9)0.0166 (8)0.0371 (10)
Geometric parameters (Å, º) top
P1—O31.4598 (19)C6—C51.380 (3)
P1—O41.4641 (18)C5—C41.387 (3)
P1—Cl12.0160 (13)C5—H5A0.9300
P1—Cl22.0262 (15)C7—H7A0.9300
O1—C61.349 (2)C3—C21.367 (3)
O1—H1A0.8200C3—C41.401 (3)
O2—C41.342 (3)C3—H3A0.9300
O2—H20.8200C2—H2A0.9300
C1—C21.412 (3)C8—H8A0.9600
C1—C61.426 (3)C8—H8B0.9600
C1—C71.431 (3)C8—H8C0.9600
N1—C71.292 (3)C9—H9A0.9600
N1—C81.470 (3)C9—H9B0.9600
N1—C91.471 (3)C9—H9C0.9600
O3—P1—O4120.75 (12)C1—C7—H7A114.0
O3—P1—Cl1109.16 (10)C2—C3—C4119.5 (2)
O4—P1—Cl1107.38 (8)C2—C3—H3A120.2
O3—P1—Cl2108.40 (8)C4—C3—H3A120.2
O4—P1—Cl2108.48 (9)O2—C4—C5117.32 (18)
Cl1—P1—Cl2100.85 (7)O2—C4—C3122.41 (19)
C6—O1—H1A109.5C5—C4—C3120.26 (19)
C4—O2—H2109.5C3—C2—C1122.27 (18)
C2—C1—C6116.78 (18)C3—C2—H2A118.9
C2—C1—C7128.16 (18)C1—C2—H2A118.9
C6—C1—C7115.03 (18)N1—C8—H8A109.5
C7—N1—C8125.83 (19)N1—C8—H8B109.5
C7—N1—C9119.8 (2)H8A—C8—H8B109.5
C8—N1—C9114.33 (19)N1—C8—H8C109.5
O1—C6—C5121.34 (17)H8A—C8—H8C109.5
O1—C6—C1117.69 (17)H8B—C8—H8C109.5
C5—C6—C1120.97 (18)N1—C9—H9A109.5
C6—C5—C4120.18 (18)N1—C9—H9B109.5
C6—C5—H5A119.9H9A—C9—H9B109.5
C4—C5—H5A119.9N1—C9—H9C109.5
N1—C7—C1131.9 (2)H9A—C9—H9C109.5
N1—C7—H7A114.0H9B—C9—H9C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.792.609 (3)180
O2—H2···O3ii0.821.832.635 (3)167
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC9H12NO2+·Cl2O2P
Mr300.07
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.922 (4), 8.163 (4), 11.035 (9)
α, β, γ (°)100.021 (19), 107.035 (2), 103.02 (3)
V3)642.3 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.903, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6473, 2898, 2374
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.06
No. of reflections2898
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.38

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.792.609 (3)179.8
O2—H2···O3ii0.821.832.635 (3)166.9
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

HJX acknowledges a Start-up Grant from Southeast University, People's Republic of China.

References

First citationElmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct. 484, 229–234.  Google Scholar
First citationRamadas, S. & David Krupadanam, G. L. (2000). Tetrahedron Asymmetry, 11, 3375–3393.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds