organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,2,2-Tetra­phenyl-1λ5-diphosphane 1-sulfide

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany, and bLinde AG, Linde Engineering Division, Dr.-Carl-von-Linde-Strasse 6–14, 82049 Pullach, Germany
*Correspondence e-mail: bhaskar-reddy.aluri@catalysis.de

(Received 20 January 2009; accepted 23 January 2009; online 28 January 2009)

In the title mol­ecule, C24H20P2S, the P—P bond length is 2.2263 (5) Å. The two phenyl rings attached to the three- and five-coordinated P atoms, respectively, form dihedral angles of 56.22 (5) and 71.74 (5)°.

Related literature

For the literature on related compounds, see: Bhattacharyya et al. (1996[Bhattacharyya, P., Slawin, A. M. Z., Smith, M. B., Williams, D. J. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3647-3651.]); Gruber et al. (1990[Gruber, M., Jones, P. G. & Schmutzler, R. (1990). Chem. Ber. 123, 1313-1317.]); Jones et al. (2002[Jones, P. G., Fischer, A. K., Farkens, M. & Schmutzler, R. (2002). Acta Cryst. E58, m478-m479.]).

[Scheme 1]

Experimental

Crystal data
  • C24H20P2S

  • Mr = 402.40

  • Monoclinic, P 21 /c

  • a = 9.32670 (19) Å

  • b = 13.6496 (4) Å

  • c = 16.0484 (4) Å

  • β = 91.7298 (17)°

  • V = 2042.12 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 200 (2) K

  • 0.45 × 0.30 × 0.28 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.892, Tmax = 0.961

  • 38972 measured reflections

  • 5499 independent reflections

  • 4493 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.096

  • S = 1.08

  • 5499 reflections

  • 244 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Earlier, Gruber et al. (1990) reported that the only phosphorus-containing product formed from the reaction between Ph2PCl and thiourea was tetraphenyldiphosphane monosulfide. Bhattacharyya et al. (1996) reported this monosulfide formed as the by-product from the same reaction using different reaction conditions. In the present publication, we report the formation of tetraphenyldiphosphane monosulfide, which was observed as a major by-product in the reaction of Ph2P(S)CH2N(Li)Ph and ClPPh2. Its molecular structure (Fig. 1) shows the bond lengths and bond angles are within the normal ranges and are in accordance with the corresponding values in tetramethyldiphosphane monosulfide (Gruber et al., 1990). The molecular structure of pentacarbonyl(tetraphenyldiphosphinomonosulfide-P)chromium(0) was reported earlier by Jones et al. (2002).

Related literature top

For the crystal structures of related compounds, see: Bhattacharyya et al. (1996); Gruber et al. (1990); Jones et al. (2002).

Experimental top

BuLi (0.77 ml, 1.94 mmol, 2.5 M in n-hexane) was added dropwise to a solution of Ph2P(S)CH2N(H)Ph (660 mg, 2.03 mmol) in THF (5 ml) at -78°C and this reaction mixture was stirred for 4 h while slowly warming up to -40°C. The resultant yellow solution was added to ClPPh2 (0.38 ml, 2.03 mmol) at 0°C in small portions via a cannula over a period of 20 min and followed stirring at room temperature overnight. The major part of THF was removed from the reaction mixture and over-layered with n-hexane to get single crystals of the title compound, which were suitable for X-ray analysis. 31P NMR (THF-d8): -14.11 (d, 1J = 247.3 Hz), 44.11 (d, 1J = 247.3 Hz).

Refinement top

All H atoms were placed in idealized positions (C—H = 0.95 Å) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids.
1,1,2,2-Tetraphenyl-1λ5-diphosphane 1-sulfide top
Crystal data top
C24H20P2SF(000) = 840
Mr = 402.40Dx = 1.309 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32981 reflections
a = 9.32670 (19) Åθ = 2.0–29.6°
b = 13.6496 (4) ŵ = 0.32 mm1
c = 16.0484 (4) ÅT = 200 K
β = 91.7298 (17)°Prism, colourless
V = 2042.12 (9) Å30.45 × 0.30 × 0.28 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
5499 independent reflections
Radiation source: fine-focus sealed tube4493 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
rotation method scansθmax = 29.1°, θmin = 2.0°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
h = 1212
Tmin = 0.892, Tmax = 0.961k = 1818
38972 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
5499 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.28 e Å3
Crystal data top
C24H20P2SV = 2042.12 (9) Å3
Mr = 402.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.32670 (19) ŵ = 0.32 mm1
b = 13.6496 (4) ÅT = 200 K
c = 16.0484 (4) Å0.45 × 0.30 × 0.28 mm
β = 91.7298 (17)°
Data collection top
Stoe IPDS II
diffractometer
5499 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
4493 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.961Rint = 0.027
38972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.096H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
5499 reflectionsΔρmin = 0.28 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.58305 (14)0.77663 (9)0.01356 (8)0.0323 (3)
C20.58628 (15)0.78402 (11)0.10028 (8)0.0380 (3)
H2A0.56400.72830.13370.046*
C30.62169 (16)0.87176 (12)0.13813 (10)0.0450 (3)
H3A0.62320.87610.19720.054*
C40.65480 (16)0.95274 (11)0.08978 (11)0.0469 (3)
H4A0.67971.01280.11560.056*
C50.65188 (16)0.94677 (11)0.00372 (10)0.0439 (3)
H5A0.67511.00260.02930.053*
C60.61519 (15)0.85951 (10)0.03445 (9)0.0376 (3)
H6A0.61190.85610.09350.045*
C70.66830 (14)0.62119 (9)0.10362 (7)0.0309 (2)
C80.78956 (15)0.67684 (11)0.12330 (9)0.0399 (3)
H8A0.79990.74010.09960.048*
C90.89570 (16)0.64037 (12)0.17754 (10)0.0455 (3)
H9A0.97820.67890.19060.055*
C100.88200 (16)0.54883 (12)0.21250 (9)0.0436 (3)
H10A0.95440.52440.24990.052*
C110.76235 (17)0.49268 (11)0.19287 (9)0.0420 (3)
H11A0.75280.42940.21670.050*
C120.65601 (15)0.52821 (10)0.13849 (8)0.0360 (3)
H12A0.57450.48890.12500.043*
C130.22346 (14)0.75419 (10)0.03664 (9)0.0352 (3)
C140.21864 (17)0.73376 (12)0.04835 (10)0.0461 (3)
H14A0.28410.68820.07080.055*
C150.11782 (19)0.78017 (15)0.10032 (11)0.0589 (5)
H15A0.11610.76750.15860.071*
C160.02074 (18)0.84419 (13)0.06782 (10)0.0609 (5)
H16A0.04960.87430.10340.073*
C170.02482 (17)0.86493 (12)0.01602 (12)0.0557 (4)
H17A0.04220.90970.03800.067*
C180.12649 (16)0.82073 (11)0.06868 (11)0.0430 (3)
H18A0.12980.83590.12650.052*
C190.28040 (15)0.57847 (10)0.13544 (9)0.0379 (3)
C200.21178 (18)0.51924 (11)0.07596 (10)0.0459 (3)
H20A0.19890.54210.02030.055*
C210.1620 (2)0.42703 (13)0.09741 (13)0.0589 (5)
H21A0.11400.38730.05680.071*
C220.1824 (2)0.39341 (13)0.17769 (15)0.0642 (5)
H22A0.15000.32990.19220.077*
C230.2495 (2)0.45130 (16)0.23683 (14)0.0675 (6)
H23A0.26270.42750.29220.081*
C240.29853 (18)0.54423 (14)0.21697 (11)0.0532 (4)
H24A0.34390.58410.25850.064*
P10.53134 (3)0.65612 (2)0.024981 (19)0.03019 (9)
P20.35427 (4)0.69731 (2)0.10811 (2)0.03240 (9)
S10.39983 (5)0.77769 (3)0.20569 (2)0.04904 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0296 (6)0.0325 (6)0.0344 (6)0.0026 (5)0.0032 (5)0.0022 (5)
C20.0367 (7)0.0421 (7)0.0350 (6)0.0007 (6)0.0036 (5)0.0036 (5)
C30.0396 (8)0.0531 (8)0.0423 (7)0.0007 (6)0.0002 (6)0.0132 (6)
C40.0374 (7)0.0414 (8)0.0619 (9)0.0012 (6)0.0019 (6)0.0156 (7)
C50.0371 (7)0.0336 (7)0.0608 (9)0.0017 (6)0.0018 (6)0.0012 (6)
C60.0363 (7)0.0359 (7)0.0404 (7)0.0015 (5)0.0020 (5)0.0015 (5)
C70.0305 (6)0.0328 (6)0.0294 (5)0.0062 (5)0.0001 (4)0.0012 (4)
C80.0347 (7)0.0404 (7)0.0441 (7)0.0002 (5)0.0050 (6)0.0058 (6)
C90.0317 (7)0.0548 (9)0.0494 (8)0.0009 (6)0.0065 (6)0.0038 (7)
C100.0391 (7)0.0533 (8)0.0383 (7)0.0160 (6)0.0034 (6)0.0020 (6)
C110.0511 (8)0.0361 (7)0.0390 (7)0.0121 (6)0.0018 (6)0.0043 (5)
C120.0392 (7)0.0312 (6)0.0373 (6)0.0045 (5)0.0005 (5)0.0015 (5)
C130.0304 (6)0.0321 (6)0.0430 (7)0.0011 (5)0.0030 (5)0.0059 (5)
C140.0389 (7)0.0547 (9)0.0438 (7)0.0065 (7)0.0107 (6)0.0024 (6)
C150.0479 (9)0.0735 (12)0.0542 (9)0.0031 (8)0.0182 (8)0.0125 (8)
C160.0405 (8)0.0593 (10)0.0816 (13)0.0032 (8)0.0181 (8)0.0254 (9)
C170.0359 (8)0.0426 (8)0.0887 (13)0.0083 (6)0.0001 (8)0.0139 (8)
C180.0343 (7)0.0352 (7)0.0595 (9)0.0035 (5)0.0032 (6)0.0068 (6)
C190.0321 (6)0.0387 (7)0.0432 (7)0.0083 (5)0.0062 (5)0.0076 (5)
C200.0526 (9)0.0380 (7)0.0481 (8)0.0001 (6)0.0162 (7)0.0033 (6)
C210.0642 (11)0.0407 (8)0.0733 (11)0.0032 (8)0.0278 (9)0.0076 (8)
C220.0558 (11)0.0419 (9)0.0963 (15)0.0086 (8)0.0248 (10)0.0192 (9)
C230.0510 (10)0.0739 (13)0.0776 (12)0.0079 (9)0.0020 (9)0.0428 (11)
C240.0423 (8)0.0632 (10)0.0538 (9)0.0029 (7)0.0049 (7)0.0224 (8)
P10.03128 (16)0.03040 (16)0.02864 (15)0.00166 (12)0.00294 (12)0.00140 (11)
P20.03193 (17)0.03396 (17)0.03117 (16)0.00544 (13)0.00136 (12)0.00023 (12)
S10.0586 (2)0.0524 (2)0.03591 (18)0.00869 (18)0.00217 (16)0.01034 (15)
Geometric parameters (Å, º) top
C1—C61.3962 (18)C13—C141.392 (2)
C1—C21.3966 (18)C13—P21.8228 (13)
C1—P11.8273 (13)C14—C151.391 (2)
C2—C31.387 (2)C14—H14A0.9500
C2—H2A0.9500C15—C161.3727 (19)
C3—C41.380 (2)C15—H15A0.9500
C3—H3A0.9500C16—C171.3743 (19)
C4—C51.385 (2)C16—H16A0.9500
C4—H4A0.9500C17—C181.389 (2)
C5—C61.387 (2)C17—H17A0.9500
C5—H5A0.9500C18—H18A0.9500
C6—H6A0.9500C19—C201.392 (2)
C7—C81.3907 (19)C19—C241.395 (2)
C7—C121.3931 (18)C19—P21.8210 (15)
C7—P11.8316 (12)C20—C211.388 (2)
C8—C91.3905 (19)C20—H20A0.9500
C8—H8A0.9500C21—C221.375 (3)
C9—C101.377 (2)C21—H21A0.9500
C9—H9A0.9500C22—C231.372 (3)
C10—C111.382 (2)C22—H22A0.9500
C10—H10A0.9500C23—C241.389 (3)
C11—C121.3887 (19)C23—H23A0.9500
C11—H11A0.9500C24—H24A0.9500
C12—H12A0.9500P1—P22.2263 (5)
C13—C181.391 (2)P2—S11.9486 (5)
C6—C1—C2118.73 (13)C13—C14—H14A120.1
C6—C1—P1126.67 (10)C16—C15—C14120.26 (16)
C2—C1—P1114.59 (10)C16—C15—H15A119.9
C3—C2—C1120.75 (14)C14—C15—H15A119.9
C3—C2—H2A119.6C15—C16—C17120.27 (15)
C1—C2—H2A119.6C15—C16—H16A119.9
C4—C3—C2119.83 (14)C17—C16—H16A119.9
C4—C3—H3A120.1C16—C17—C18120.30 (15)
C2—C3—H3A120.1C16—C17—H17A119.9
C3—C4—C5120.19 (14)C18—C17—H17A119.9
C3—C4—H4A119.9C17—C18—C13119.88 (16)
C5—C4—H4A119.9C17—C18—H18A120.1
C4—C5—C6120.24 (14)C13—C18—H18A120.1
C4—C5—H5A119.9C20—C19—C24119.26 (14)
C6—C5—H5A119.9C20—C19—P2121.44 (11)
C5—C6—C1120.26 (13)C24—C19—P2119.23 (12)
C5—C6—H6A119.9C21—C20—C19120.44 (16)
C1—C6—H6A119.9C21—C20—H20A119.8
C8—C7—C12118.85 (12)C19—C20—H20A119.8
C8—C7—P1124.04 (10)C22—C21—C20119.80 (19)
C12—C7—P1116.73 (10)C22—C21—H21A120.1
C9—C8—C7120.35 (14)C20—C21—H21A120.1
C9—C8—H8A119.8C23—C22—C21120.22 (17)
C7—C8—H8A119.8C23—C22—H22A119.9
C10—C9—C8120.45 (14)C21—C22—H22A119.9
C10—C9—H9A119.8C22—C23—C24120.92 (17)
C8—C9—H9A119.8C22—C23—H23A119.5
C9—C10—C11119.63 (13)C24—C23—H23A119.5
C9—C10—H10A120.2C23—C24—C19119.34 (18)
C11—C10—H10A120.2C23—C24—H24A120.3
C10—C11—C12120.40 (13)C19—C24—H24A120.3
C10—C11—H11A119.8C1—P1—C7106.37 (6)
C12—C11—H11A119.8C1—P1—P2100.58 (5)
C11—C12—C7120.31 (13)C7—P1—P299.63 (4)
C11—C12—H12A119.8C19—P2—C13106.26 (6)
C7—C12—H12A119.8C19—P2—S1112.51 (5)
C18—C13—C14119.41 (13)C13—P2—S1113.05 (5)
C18—C13—P2118.41 (11)C19—P2—P1102.26 (5)
C14—C13—P2122.18 (11)C13—P2—P1103.00 (5)
C15—C14—C13119.85 (16)S1—P2—P1118.43 (2)
C15—C14—H14A120.1
C6—C1—C2—C30.4 (2)C22—C23—C24—C190.7 (3)
P1—C1—C2—C3179.04 (11)C20—C19—C24—C230.9 (2)
C1—C2—C3—C40.3 (2)P2—C19—C24—C23176.34 (14)
C2—C3—C4—C50.4 (2)C6—C1—P1—C752.24 (13)
C3—C4—C5—C60.2 (2)C2—C1—P1—C7129.30 (10)
C4—C5—C6—C11.0 (2)C6—C1—P1—P251.19 (12)
C2—C1—C6—C51.1 (2)C2—C1—P1—P2127.26 (10)
P1—C1—C6—C5179.48 (11)C8—C7—P1—C13.34 (14)
C12—C7—C8—C90.6 (2)C12—C7—P1—C1176.18 (10)
P1—C7—C8—C9173.34 (12)C8—C7—P1—P2107.46 (12)
C7—C8—C9—C100.1 (2)C12—C7—P1—P279.70 (10)
C8—C9—C10—C110.5 (2)C20—C19—P2—C1341.29 (14)
C9—C10—C11—C120.3 (2)C24—C19—P2—C13141.56 (12)
C10—C11—C12—C70.5 (2)C20—C19—P2—S1165.51 (11)
C8—C7—C12—C110.9 (2)C24—C19—P2—S117.34 (14)
P1—C7—C12—C11174.15 (11)C20—C19—P2—P166.36 (12)
C18—C13—C14—C150.3 (2)C24—C19—P2—P1110.79 (12)
P2—C13—C14—C15179.17 (13)C18—C13—P2—C1997.09 (12)
C13—C14—C15—C161.6 (3)C14—C13—P2—C1983.43 (14)
C14—C15—C16—C171.7 (3)C18—C13—P2—S126.79 (13)
C15—C16—C17—C180.5 (3)C14—C13—P2—S1152.68 (11)
C16—C17—C18—C130.8 (2)C18—C13—P2—P1155.79 (10)
C14—C13—C18—C170.9 (2)C14—C13—P2—P123.68 (13)
P2—C13—C18—C17179.60 (12)C1—P1—P2—C19171.48 (6)
C24—C19—C20—C210.1 (2)C7—P1—P2—C1979.70 (6)
P2—C19—C20—C21177.07 (13)C1—P1—P2—C1361.35 (6)
C19—C20—C21—C220.9 (3)C7—P1—P2—C13170.16 (6)
C20—C21—C22—C231.1 (3)C1—P1—P2—S164.24 (5)
C21—C22—C23—C240.3 (3)C7—P1—P2—S144.58 (5)

Experimental details

Crystal data
Chemical formulaC24H20P2S
Mr402.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)9.32670 (19), 13.6496 (4), 16.0484 (4)
β (°) 91.7298 (17)
V3)2042.12 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.45 × 0.30 × 0.28
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.892, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
38972, 5499, 4493
Rint0.027
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.096, 1.08
No. of reflections5499
No. of parameters244
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.28

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationBhattacharyya, P., Slawin, A. M. Z., Smith, M. B., Williams, D. J. & Woollins, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 3647–3651.  CSD CrossRef Web of Science Google Scholar
First citationGruber, M., Jones, P. G. & Schmutzler, R. (1990). Chem. Ber. 123, 1313–1317.  CrossRef CAS Web of Science Google Scholar
First citationJones, P. G., Fischer, A. K., Farkens, M. & Schmutzler, R. (2002). Acta Cryst. E58, m478–m479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds