organic compounds
Hydronium (3-oxo-1-phosphono-1,3-dihydroisobenzofuran-1-yl)phosphonate
aLaboratoire de Biophysique Moléculaire Cellulaire et Tissulaire, UMR 7033 CNRS, UFR–SMBH Université Paris-Nord, 74 rue M. Cachin, 93017 Bobigny Cedex, France, and bService de Cristallochimie, Institut de Chimie des Substances Naturelles, CNRS, 1 Av. de la Terrasse, 91198 Gif sur-Yvette Cedex, France
*Correspondence e-mail: carole.barbey@smbh.univ-paris13.fr
In the title compound, H3O+·C8H7O8P2−, the anions form inversion dimmers by way of pairs of O—H⋯O hydrogen bonds involving the phosphonic functions and via the hydronium cation. Further O—H⋯O links involving the hydronium cation play a prominant part in the cohesion of the by building bridges between bisphosphonate pairs, forming infinite ribbons along the b-axis direction and by cross-linking these ribbons perpendicularly along the a-axis direction, forming an infinite three-dimensional hydrogen-bond network. The benzene ring and the C=O atoms of the furan ring are disordered over two sets of positions of equal occupancy.
Related literature
For the pharmacological applications of bisphosphonates, see Heymann et al. (2004); Rodan & Martin (2000); Fournier et al. (2002); Hamma-Kourbali et al. (2003); Wood et al. (2002); Martin et al. (2001, 2002); Sanders et al. (2003). For general background, see Lecouvey et al. (2003a,b); Monteil et al. (2005); Guénin et al. (2004); Lecouvey & Leroux (2000); Vachal et al. (2006). For related structures, see Sylvestre et al. (2001); Lecouvey et al. (2002).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 1998); cell HKL (Otwinowski & Minor, 1997); data reduction: HKL; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).
Supporting information
10.1107/S1600536809000907/dn2420sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000907/dn2420Isup2.hkl
Synthesis of (3-Oxo-1-phosphono-1,3-dihydro-isobenzofuran-1-yl) -phosphonic acid] was done according to the published procedure (Guénin et al., 2004, compound 3 h). Briefly two equivalents of tris(trimethylsilyl)phosphite were added under N2 to phtalic anhydride in freshly distilled THF at room temperature. The resulting mixture was then heated at 50°C for 12 h. After evaopration of volatile fractions methanol was added to the residue. After 1 h stirring and methanol evaporation the title compound was washed several times with dimethyl ether. Crystallization was done by slow evaporation at room temperature from a concentrated methanol/ water (9/1) solution to give colorless crystal with max. size 0.3 mm, suitable for diffraction.
All H atoms attached to C or O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methylene) and O—H = 0.82 Å (hydoxyl) with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(O) for others. Owing to the fact that each of the P2—O22 and P2—O23 bonds seems to be a mixture of single and double bonds and that solvent molecule was 3 times hydrogen donor, the solvent molecule was refined as H3O+ and the bisphoshonate as the basic form. H atoms of the hydronium were located in difference Fourier syntheses and initially refined using restraints (O-H= 0.93 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of
they were treated as riding on the parent O atom.Disorder of the cyclic structure was modeled with two different positions per disordered atom with occupation factors of 0.5. The two disordered part were refined using the tools, PART and SAME, available in SHELXL-97 (Sheldrick, 2008).
Data collection: COLLECT (Hooft, 1998); cell
HKL (Otwinowski & Minor, 1997); data reduction: HKL (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).Fig. 1. Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. |
H3O+·C8H7O8P2− | F(000) = 1280 |
Mr = 312.10 | Dx = 1.716 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -C 2yc | Cell parameters from 2338 reflections |
a = 26.2271 (9) Å | θ = 0.4–25.4° |
b = 7.2913 (3) Å | µ = 0.40 mm−1 |
c = 15.2621 (6) Å | T = 293 K |
β = 124.103 (2)° | Parallelepipedic, colourless |
V = 2416.66 (16) Å3 | 0.30 × 0.10 × 0.10 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 1627 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.071 |
Graphite monochromator | θmax = 25.4°, θmin = 3.0° |
Detector resolution: 9 pixels mm-1 | h = −31→30 |
ϕ and ω scans | k = −8→8 |
14205 measured reflections | l = −18→17 |
2139 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0625P)2 + 4.0148P] where P = (Fo2 + 2Fc2)/3 |
2139 reflections | (Δ/σ)max = 0.001 |
229 parameters | Δρmax = 0.33 e Å−3 |
21 restraints | Δρmin = −0.37 e Å−3 |
H3O+·C8H7O8P2− | V = 2416.66 (16) Å3 |
Mr = 312.10 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 26.2271 (9) Å | µ = 0.40 mm−1 |
b = 7.2913 (3) Å | T = 293 K |
c = 15.2621 (6) Å | 0.30 × 0.10 × 0.10 mm |
β = 124.103 (2)° |
Nonius KappaCCD diffractometer | 1627 reflections with I > 2σ(I) |
14205 measured reflections | Rint = 0.071 |
2139 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 21 restraints |
wR(F2) = 0.126 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.33 e Å−3 |
2139 reflections | Δρmin = −0.37 e Å−3 |
229 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.81092 (4) | 0.03803 (12) | 0.41201 (6) | 0.0268 (3) | |
O11 | 0.79680 (10) | −0.0117 (3) | 0.49420 (18) | 0.0338 (6) | |
H11 | 0.7615 | 0.0191 | 0.4721 | 0.051* | |
O12 | 0.75192 (9) | 0.0932 (3) | 0.30772 (17) | 0.0338 (6) | |
H12 | 0.7528 | 0.0541 | 0.2582 | 0.051* | |
O13 | 0.84830 (10) | −0.1086 (3) | 0.40406 (18) | 0.0339 (6) | |
P2 | 0.82143 (3) | 0.45428 (11) | 0.46825 (6) | 0.0250 (3) | |
O23 | 0.80619 (9) | 0.4158 (3) | 0.54732 (17) | 0.0316 (5) | |
O22 | 0.76507 (9) | 0.5004 (3) | 0.36019 (17) | 0.0323 (6) | |
O21 | 0.87289 (10) | 0.5997 (3) | 0.50941 (18) | 0.0339 (6) | |
H21 | 0.8605 | 0.6856 | 0.4676 | 0.051* | |
C1 | 0.85893 (13) | 0.2462 (4) | 0.4606 (2) | 0.0252 (7) | |
O1 | 0.90991 (9) | 0.2067 (3) | 0.57008 (15) | 0.0329 (6) | |
C2A | 0.9660 (4) | 0.2436 (17) | 0.5830 (7) | 0.030 (3) | 0.50 |
O2A | 1.0134 (4) | 0.2317 (14) | 0.6679 (7) | 0.058 (3) | 0.50 |
C3A | 0.9536 (4) | 0.2866 (17) | 0.4802 (7) | 0.032 (3) | 0.50 |
C4 | 0.89030 (14) | 0.2748 (5) | 0.4041 (2) | 0.0295 (7) | |
C5 | 0.86705 (16) | 0.3115 (5) | 0.2986 (3) | 0.0373 (8) | |
H5 | 0.8250 | 0.3067 | 0.2467 | 0.045* | |
C6A | 0.9093 (5) | 0.356 (2) | 0.2737 (11) | 0.037 (4) | 0.50 |
H6A | 0.8947 | 0.3890 | 0.2046 | 0.045* | 0.50 |
C7A | 0.9732 (6) | 0.3515 (19) | 0.3495 (10) | 0.056 (4) | 0.50 |
H7A | 1.0003 | 0.3736 | 0.3296 | 0.068* | 0.50 |
C8A | 0.9952 (5) | 0.3150 (15) | 0.4523 (9) | 0.050 (3) | 0.50 |
H8A | 1.0374 | 0.3092 | 0.5032 | 0.060* | 0.50 |
C2B | 0.9639 (5) | 0.1751 (16) | 0.5743 (9) | 0.038 (4) | 0.50 |
O2B | 1.0105 (4) | 0.1345 (12) | 0.6576 (8) | 0.053 (2) | 0.50 |
C3B | 0.9517 (4) | 0.2220 (17) | 0.4728 (8) | 0.030 (3) | 0.50 |
C6B | 0.9075 (6) | 0.297 (3) | 0.2668 (12) | 0.045 (5) | 0.50 |
H6B | 0.8922 | 0.3094 | 0.1955 | 0.055* | 0.50 |
C7B | 0.9703 (6) | 0.264 (2) | 0.3393 (11) | 0.062 (5) | 0.50 |
H7B | 0.9971 | 0.2723 | 0.3177 | 0.074* | 0.50 |
C8B | 0.9926 (5) | 0.2211 (16) | 0.4419 (10) | 0.052 (3) | 0.50 |
H8B | 1.0339 | 0.1918 | 0.4897 | 0.062* | 0.50 |
O1W | 0.85750 (13) | −0.1636 (4) | 0.2188 (2) | 0.0646 (9) | |
H1W | 0.8473 | −0.1639 | 0.2690 | 0.097* | |
H2W | 0.8410 | −0.2545 | 0.1654 | 0.097* | |
H3W | 0.9009 | −0.1544 | 0.2575 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0238 (4) | 0.0260 (5) | 0.0315 (5) | 0.0011 (3) | 0.0160 (4) | 0.0003 (3) |
O11 | 0.0267 (12) | 0.0395 (14) | 0.0395 (13) | 0.0046 (10) | 0.0212 (11) | 0.0068 (11) |
O12 | 0.0250 (11) | 0.0408 (14) | 0.0277 (11) | 0.0002 (10) | 0.0099 (10) | −0.0051 (10) |
O13 | 0.0351 (12) | 0.0286 (13) | 0.0461 (14) | 0.0040 (10) | 0.0277 (12) | −0.0010 (10) |
P2 | 0.0219 (4) | 0.0269 (5) | 0.0268 (4) | −0.0013 (3) | 0.0141 (4) | 0.0004 (3) |
O23 | 0.0298 (11) | 0.0380 (13) | 0.0329 (12) | 0.0034 (10) | 0.0211 (11) | 0.0044 (10) |
O22 | 0.0224 (11) | 0.0385 (14) | 0.0311 (12) | 0.0041 (10) | 0.0120 (10) | 0.0051 (10) |
O21 | 0.0259 (11) | 0.0296 (13) | 0.0391 (13) | −0.0050 (10) | 0.0138 (11) | 0.0014 (10) |
C1 | 0.0174 (14) | 0.0338 (18) | 0.0203 (14) | 0.0011 (13) | 0.0081 (13) | 0.0012 (12) |
O1 | 0.0210 (11) | 0.0494 (15) | 0.0257 (11) | 0.0043 (10) | 0.0116 (10) | 0.0059 (10) |
C2A | 0.012 (4) | 0.046 (9) | 0.026 (5) | 0.000 (4) | 0.007 (4) | −0.008 (4) |
O2A | 0.022 (4) | 0.111 (8) | 0.032 (4) | −0.004 (5) | 0.009 (3) | −0.001 (5) |
C3A | 0.024 (4) | 0.033 (9) | 0.038 (5) | −0.008 (4) | 0.016 (4) | −0.005 (4) |
C4 | 0.0237 (16) | 0.0341 (19) | 0.0338 (16) | 0.0004 (14) | 0.0180 (15) | 0.0002 (14) |
C5 | 0.0329 (18) | 0.046 (2) | 0.0331 (18) | 0.0081 (16) | 0.0186 (16) | 0.0073 (16) |
C6A | 0.046 (6) | 0.032 (11) | 0.039 (5) | 0.008 (5) | 0.027 (5) | 0.006 (5) |
C7A | 0.050 (6) | 0.086 (12) | 0.057 (6) | −0.004 (7) | 0.045 (6) | 0.005 (7) |
C8A | 0.032 (5) | 0.074 (9) | 0.048 (5) | −0.016 (6) | 0.026 (4) | −0.010 (6) |
C2B | 0.033 (6) | 0.035 (8) | 0.043 (6) | −0.005 (4) | 0.019 (5) | −0.010 (5) |
O2B | 0.020 (3) | 0.083 (7) | 0.038 (4) | 0.008 (4) | 0.005 (3) | −0.002 (5) |
C3B | 0.024 (4) | 0.028 (8) | 0.039 (5) | −0.006 (4) | 0.019 (4) | −0.009 (4) |
C6B | 0.073 (8) | 0.036 (12) | 0.053 (7) | 0.017 (6) | 0.051 (7) | 0.014 (6) |
C7B | 0.050 (7) | 0.091 (12) | 0.070 (8) | 0.011 (7) | 0.049 (7) | 0.024 (8) |
C8B | 0.029 (5) | 0.074 (9) | 0.061 (6) | −0.001 (6) | 0.030 (5) | 0.007 (7) |
O1W | 0.0470 (16) | 0.081 (2) | 0.0599 (18) | 0.0001 (16) | 0.0266 (15) | −0.0147 (16) |
P1—O13 | 1.501 (2) | C4—C3B | 1.395 (9) |
P1—O12 | 1.526 (2) | C5—C6A | 1.397 (11) |
P1—O11 | 1.537 (2) | C5—C6B | 1.397 (11) |
P1—C1 | 1.842 (3) | C5—H5 | 0.9300 |
O11—H11 | 0.8200 | C6A—C7A | 1.405 (11) |
O12—H12 | 0.8200 | C6A—H6A | 0.9300 |
P2—O23 | 1.495 (2) | C7A—C8A | 1.360 (11) |
P2—O22 | 1.511 (2) | C7A—H7A | 0.9300 |
P2—O21 | 1.546 (2) | C8A—H8A | 0.9300 |
P2—C1 | 1.847 (3) | C2B—O2B | 1.207 (10) |
O21—H21 | 0.8200 | C2B—C3B | 1.437 (11) |
C1—O1 | 1.469 (3) | C3B—C8B | 1.393 (10) |
C1—C4 | 1.503 (4) | C6B—C7B | 1.396 (12) |
O1—C2A | 1.397 (9) | C6B—H6B | 0.9300 |
O1—C2B | 1.399 (10) | C7B—C8B | 1.366 (11) |
C2A—O2A | 1.193 (9) | C7B—H7B | 0.9300 |
C2A—C3A | 1.447 (10) | C8B—H8B | 0.9300 |
C3A—C8A | 1.390 (10) | O1W—H1W | 0.9423 |
C3A—C4 | 1.397 (9) | O1W—H2W | 0.9469 |
C4—C5 | 1.391 (4) | O1W—H3W | 0.9450 |
O13—P1—O12 | 115.47 (13) | C3A—C4—C1 | 108.0 (5) |
O13—P1—O11 | 111.42 (13) | C4—C5—C6A | 117.4 (6) |
O12—P1—O11 | 110.24 (12) | C4—C5—C6B | 117.6 (7) |
O13—P1—C1 | 106.83 (13) | C6A—C5—C6B | 18.0 (14) |
O12—P1—C1 | 105.50 (13) | C4—C5—H5 | 121.3 |
O11—P1—C1 | 106.80 (13) | C6A—C5—H5 | 121.3 |
P1—O11—H11 | 109.5 | C6B—C5—H5 | 118.0 |
P1—O12—H12 | 109.5 | C5—C6A—C7A | 122.2 (10) |
O23—P2—O22 | 112.47 (12) | C5—C6A—H6A | 118.9 |
O23—P2—O21 | 111.60 (13) | C7A—C6A—H6A | 118.9 |
O22—P2—O21 | 112.81 (13) | C8A—C7A—C6A | 119.5 (11) |
O23—P2—C1 | 106.84 (13) | C8A—C7A—H7A | 120.3 |
O22—P2—C1 | 110.08 (13) | C6A—C7A—H7A | 120.3 |
O21—P2—C1 | 102.39 (13) | C7A—C8A—C3A | 119.0 (10) |
P2—O21—H21 | 109.5 | C7A—C8A—H8A | 120.5 |
O1—C1—C4 | 103.8 (2) | C3A—C8A—H8A | 120.5 |
O1—C1—P1 | 106.1 (2) | O2B—C2B—O1 | 119.4 (10) |
C4—C1—P1 | 110.7 (2) | O2B—C2B—C3B | 132.5 (10) |
O1—C1—P2 | 105.48 (18) | O1—C2B—C3B | 107.6 (8) |
C4—C1—P2 | 113.9 (2) | C8B—C3B—C4 | 122.0 (8) |
P1—C1—P2 | 115.74 (15) | C8B—C3B—C2B | 128.0 (9) |
C2A—O1—C2B | 21.1 (7) | C4—C3B—C2B | 110.0 (7) |
C2A—O1—C1 | 109.7 (4) | C7B—C6B—C5 | 121.7 (11) |
C2B—O1—C1 | 109.7 (5) | C7B—C6B—H6B | 119.2 |
O2A—C2A—O1 | 120.8 (9) | C5—C6B—H6B | 119.2 |
O2A—C2A—C3A | 131.1 (9) | C8B—C7B—C6B | 120.3 (11) |
O1—C2A—C3A | 108.1 (7) | C8B—C7B—H7B | 119.9 |
C8A—C3A—C4 | 121.7 (8) | C6B—C7B—H7B | 119.9 |
C8A—C3A—C2A | 128.8 (9) | C7B—C8B—C3B | 118.1 (10) |
C4—C3A—C2A | 109.1 (7) | C7B—C8B—H8B | 120.9 |
C5—C4—C3B | 119.7 (5) | C3B—C8B—H8B | 120.9 |
C5—C4—C3A | 119.7 (5) | H1W—O1W—H2W | 119.8 |
C3B—C4—C3A | 19.8 (8) | H1W—O1W—H3W | 106.4 |
C5—C4—C1 | 131.7 (3) | H2W—O1W—H3W | 113.4 |
C3B—C4—C1 | 107.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O23i | 0.82 | 1.69 | 2.504 (3) | 168 |
O12—H12···O22ii | 0.82 | 1.64 | 2.438 (3) | 164 |
O21—H21···O13iii | 0.82 | 1.72 | 2.522 (3) | 167 |
O1W—H1W···O13 | 0.94 | 2.09 | 2.996 (4) | 162 |
O1W—H2W···O23iv | 0.95 | 1.90 | 2.845 (4) | 174 |
O1W—H3W···O2Bv | 0.94 | 1.93 | 2.875 (10) | 177 |
O1W—H3W···O2Av | 0.94 | 1.95 | 2.853 (9) | 159 |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) x, −y, z−1/2; (v) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | H3O+·C8H7O8P2− |
Mr | 312.10 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 26.2271 (9), 7.2913 (3), 15.2621 (6) |
β (°) | 124.103 (2) |
V (Å3) | 2416.66 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.40 |
Crystal size (mm) | 0.30 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14205, 2139, 1627 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.603 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.126, 1.05 |
No. of reflections | 2139 |
No. of parameters | 229 |
No. of restraints | 21 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.37 |
Computer programs: COLLECT (Hooft, 1998), HKL (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and CrystalBuilder (Welter, 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
O11—H11···O23i | 0.82 | 1.69 | 2.504 (3) | 168.4 |
O12—H12···O22ii | 0.82 | 1.64 | 2.438 (3) | 163.8 |
O21—H21···O13iii | 0.82 | 1.72 | 2.522 (3) | 167.0 |
O1W—H1W···O13 | 0.94 | 2.09 | 2.996 (4) | 161.9 |
O1W—H2W···O23iv | 0.95 | 1.90 | 2.845 (4) | 173.6 |
O1W—H3W···O2Bv | 0.94 | 1.93 | 2.875 (10) | 177.3 |
O1W—H3W···O2Av | 0.94 | 1.95 | 2.853 (9) | 159.1 |
Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) x, −y, z−1/2; (v) −x+2, −y, −z+1. |
Acknowledgements
The authors thank Dr Jana Sopkova de Oliveira Santos, CERMN, Université de Caen Basse-Normandie, for help during the data processing, and acknowledge Professor Marc Lecouvey for his advice.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fournier, P., Boissier, S., Filleur, S., Guglielmi, J., Cabon, F., Colombel, M. & Clezardin, P. (2002). Cancer Res. 62, 6538-6544. Web of Science PubMed CAS Google Scholar
Guénin, E., Degache, E., Liquier, J. & Lecouvey, M. (2004). Eur. J. Org. Chem. pp. 2983–2987. Google Scholar
Hamma-Kourbali, Y., Di Benedetto, M., Ledoux, D., Oudar, O., Leroux, Y., Lecouvey, M. & Kraemer, M. (2003). Biochem. Biophys. Res. Commun. 310, 816–823. Web of Science CrossRef PubMed CAS Google Scholar
Heymann, D., Ory, B., Gouin, F., Green, J. R. & Redini, F. (2004). Trends Mol. Med. 10 337–343. Web of Science CrossRef PubMed CAS Google Scholar
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Lecouvey, M., Barbey, C., Navaza, A., Neuman, A. & Prangé, T. (2002). Acta Cryst. C58, o521–o524. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lecouvey, M. & Leroux, Y. (2000). Heteroat. Chem. 11, 556–561. Web of Science CrossRef CAS Google Scholar
Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., el Manouni, D., Louriki, M. (2003a). Chem. Abstr. 138, 122736. Google Scholar
Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., el Manouni, D., Louriki, M. (2003b). World Patent WO 03/008425. Google Scholar
Martin, M. B., Sanders, J. M., Kendrick, H., de Luca-Fradley, K., Lewis, J. C., Grimley, J. S., Van Brussel, E. M., Olsen, J. R., Meints, G. A., Burzynska, A., Kafarski, P., Croft, S. L. & Oldfield, E. (2002). J. Med. Chem. 45, 2904–2914. Web of Science CSD CrossRef PubMed CAS Google Scholar
Martin, M. B., Grimley, J. S., Lewis, J. C., Heath, H. T., 3rd, Bailey, B. N., Kendrick, H., Yardley, V., Caldera, A., Lira, R., Urbina, J. A., Moreno, S. N., Docampo, R., Croft, S. L., Oldfield, E. (2001). J. Med. Chem. 44, 909–916. Google Scholar
Monteil, M., Guenin, E., Migianu, E., Lutomski, D. & Lecouvey, M. (2005). Tetrahedron, 61, 7528–7537. Web of Science CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rodan, G. A. & Martin, T. J. (2000). Science, 289, 1508–1514. Web of Science CrossRef PubMed CAS Google Scholar
Sanders, J. M., Gomez, A. O., Mao, J., Meints, G. A., Van Brussel, E. M., Burzynska, A., Kafarski, P., Gonzalez-Pacanowska, D. & Oldfield, E. (2003). J. Med. Chem. 46, 5171–5183. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sylvestre, J. P., Nguyen, Q. D. & Leroux, Y. (2001). Heteroat. Chem. 12, 73–90. Google Scholar
Vachal, P., Hale, J. J., Lu, Z., Streckfuss, E. C., Mills, S. G., MacCoss, M., Yin, D. H., Algayer, K., Manser, K., Kesioglou, F., Ghosh, S. & Alani, L. L. (2006). J. Med. Chem. 49, 3060–3063. Web of Science CrossRef PubMed CAS Google Scholar
Welter, R. (2006). Acta Cryst. A62, s252. CrossRef IUCr Journals Google Scholar
Wood, J., Bonjean, K., Ruetz, S., Bellahcene, A., Devy, L., Foidart, J. M., Castronovo, V. & Green, J. R. (2002). J. Pharmacol. Exp. Ther. 302, 1055–1061. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C8H8O8P2, belongs to the bisphosphonate family (or 1-hydroxymethylene-1,1-bisphosphonic acids or HMBPs). These compounds are synthetic structural analogues of pyrophosphate and are characterized by an enzymatically stable P—C—P group instead of the P—O—P. They are known to have a wide range of applications. They are clinically used in treatement of various bone diseases, such as Pagets disease, osteoporosis, tumor osteolysis or hypercalcemia of malignancy (Heymann et al., 2004; Rodan & Martin, 2000). They are known to induce inhibition of breast and prostate cancer cell proliferation and more recently to inhibit angiogenesis in vitro and in vivo (Fournier et al., 2002; Hamma-Kourbali et al., 2003; Wood et al., 2002). In addition, HMBPs have also activity against several trypanosomatid and apicomplexan parasites (Martin et al., 2001; Martin et al., 2002; Sanders et al., 2003). HMBPs are usually obtained from two different synthetic methods (Lecouvey & Leroux, 2000). Unfortunately, these methods are not always suitable for fragile, aromatic or functionalized substrates. Recently we developed a new method of HMBP synthesis from silylated phosphite and acid chlorides (Lecouvey et al., 2003a,b; Monteil et al., 2005) (or acid anhydrides (Guénin et al., 2004)) that gave an easy access to the obtaining of aromatic and functionalized HMBPs. Using phthalic anhydride as a substrate, a new and original cyclic bisphosphonate was described (Guénin et al., 2004). The cyclic structure of this compound was provided indirectly by IR measurements and further opening of the cycle in basic media. Here we undoubtly proved this cyclic structure, the hydroxy function being part of a lactone. This compound presents a real biological interest as it could act as a prodrug. The hydroxy function which is essential to the HMBP biological properties is in this particular case totally hidden, but could be reformed in the cell by esterase activity. Such acyloxymethyl bis(phosphonate) prodrugs have already been described and the protection shown to be reversible (Vachal et al., 2006).
Bisphosphonate are compounds with super-acid properties, and they easily crystallize as mono salts of sodium or potassium (Sylvestre et al., 2001) or as well characterized solvates (Lecouvey et al., 2002) where crystals generally include water.
The asymetric unit of the title compound is built up from one deprotonated HMBP anion and a H3O+ cation (Fig. 1) which are linked through OW—H···O hydrogen bonds (Table 1). The crystal structure consists of hydrophilic layers that enclose the hydronium cation and bisphosphonate function where molecules linked by pair and less hydrophilic layers made of aromatic rings attached to the cyclic bisphosphonate structure.