metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m177-m178

Poly[[aqua­(μ2-oxalato)(μ2-2-oxido­pyridinium-3-carboxylato)dysprosium(III)] monohydrate]

aSchool of Chemistry and the Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bSouth China Normal University, Key Laboratory of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: zrh321@yahoo.com.cn

(Received 20 December 2008; accepted 7 January 2009; online 10 January 2009)

In the title complex, {[Dy(C6H4NO3)(C2O4)(H2O)]·H2O}n, the DyIII ion is coordinated by seven O atoms from two 2-oxidopyridinium-3-carboxylate ligands, two oxalate ligands and one water mol­ecule, displaying a distorted bicapped trigonal-prismatic geometry. The carboxyl­ate groups of the 2-oxidopyridinium-3-carboxylate and oxalate ligands link dysprosium metal centres, forming layers parallel to (100). These layers are further connected by inter­molecular O—H⋯O hydrogen-bonding inter­actions involving the coordin­ated water mol­ecules, forming a three-dimensional supra­molecular network. The uncoordinated water mol­ecule is involved in N—H⋯O and O—H⋯O hydrogen-bonding inter­actions within the layer.

Related literature

For background to the mol­ecular self-assembly of supra­molecular architectures, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Zeng et al. (2007[Zeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.]).

[Scheme 1]

Experimental

Crystal data
  • [Dy(C6H4NO3)(C2O4)(H2O)]·H2O

  • Mr = 424.65

  • Triclinic, [P \overline 1]

  • a = 6.5359 (15) Å

  • b = 9.561 (2) Å

  • c = 9.734 (2) Å

  • α = 71.906 (2)°

  • β = 78.800 (3)°

  • γ = 80.305 (2)°

  • V = 563.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.68 mm−1

  • T = 296 (2) K

  • 0.17 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.397, Tmax = 0.455 (expected range = 0.342–0.393)

  • 2926 measured reflections

  • 2003 independent reflections

  • 1888 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.09

  • 2003 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 2.29 e Å−3

  • Δρmin = −1.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2W 0.86 1.99 2.785 (9) 154
O1W—H1W⋯O2i 0.85 1.94 2.732 (7) 155
O1W—H2W⋯O4ii 0.85 2.07 2.751 (7) 137
O2W—H4W⋯O1iii 0.85 2.26 3.080 (8) 163
O2W—H4W⋯O6iii 0.85 2.36 2.878 (8) 120
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) x+1, y, z; (iii) x, y, z-1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Zeng et al., 2007; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metal ions and the bridging building blocks, as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. Recently, we obtained the title coordination polymer, which was synthesized under hydrothermal conditions.

In the structure of the title compound, each DyIII centre is in a bicapped trigonal prismatic geometry, defined by seven oxygen atoms from two 2-oxidopyridinium-3-carboxylate ligands, one oxalate ligand, and one water molecule Fig. 1. The DyIII ions are linked by 2-oxidopyridinium-3-carboxylate ligands and oxalate ligands to form a layer in the bc plane, and the adjacent Dy···Dy separations are 5.858 (4), 6.186 (5) and 6.239 Å, respectively. The layers are further connected by ιntermolecular O—H···O hydrogen bonding interactions inolving the coordinated water molecules to form a three-dimensional supramolecular network (Table 1, Fig. 2). Within each layer, free water molecules further link the complexes through N-H···O and O-H···O bonding interactions (Table 1).

Related literature top

For background to the molecular self-assembly of supramolecular architectures, see: Moulton & Zaworotko (2001); Zeng et al. (2007).

Experimental top

A mixture of Dy2O3 (0.375 g; 1 mmol), 2-oxynicotinic acid (0.127 g; 1 mmol), oxalic acid (0.09 g; 1 mmol), water (10 ml) in the presence of HNO3 (0.024 g; 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated and maintained at 446 K for 2 days, and then cooled to room temperature at 5 K h-1 and obtained the colorless block crystals.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O–H = 0.85 Å and H···H = 1.39 Å, and with Uiso(H) = 1.5 Ueq(O), and then were treated as riding mode. H atoms attached to C and N atoms were placed at calculated positions and were treated as riding on their parent atoms with C—H = 0.93 Å, and N-H= 0.86Å with Uiso(H) = 1.2 Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003; software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i)1 - x, 1 - y, 2 - z; (ii)1 - x, 2 - y, 1 - z; (iii)1 - x, 2 - y, 2 - z.
[Figure 2] Fig. 2. A view of the three-dimensional supramolecular network. Hydrogen bonds are shown as dashed lines.
Poly[[aqua(µ2-oxalato)(µ2-2-oxidopyridinium-3- carboxylato)dysprosium(III)] monohydrate] top
Crystal data top
[Dy(C6H4NO3)(C2O4)(H2O)]·H2OZ = 2
Mr = 424.65F(000) = 402
Triclinic, P1Dx = 2.503 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5359 (15) ÅCell parameters from 6377 reflections
b = 9.561 (2) Åθ = 1.7–28.0°
c = 9.734 (2) ŵ = 6.68 mm1
α = 71.906 (2)°T = 296 K
β = 78.800 (3)°Block, colourless
γ = 80.305 (2)°0.17 × 0.16 × 0.14 mm
V = 563.4 (2) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2003 independent reflections
Radiation source: fine-focus sealed tube1888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
h = 77
Tmin = 0.397, Tmax = 0.455k = 119
2926 measured reflectionsl = 117
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0379P)2 + 2.6561P]
where P = (Fo2 + 2Fc2)/3
2003 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 2.29 e Å3
0 restraintsΔρmin = 1.55 e Å3
Crystal data top
[Dy(C6H4NO3)(C2O4)(H2O)]·H2Oγ = 80.305 (2)°
Mr = 424.65V = 563.4 (2) Å3
Triclinic, P1Z = 2
a = 6.5359 (15) ÅMo Kα radiation
b = 9.561 (2) ŵ = 6.68 mm1
c = 9.734 (2) ÅT = 296 K
α = 71.906 (2)°0.17 × 0.16 × 0.14 mm
β = 78.800 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
2003 independent reflections
Absorption correction: multi-scan
(APEX2; Bruker, 2004)
1888 reflections with I > 2σ(I)
Tmin = 0.397, Tmax = 0.455Rint = 0.021
2926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.09Δρmax = 2.29 e Å3
2003 reflectionsΔρmin = 1.55 e Å3
172 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Dy10.59123 (5)0.79001 (3)0.80042 (3)0.01511 (12)
O40.3353 (7)0.8866 (5)0.6354 (5)0.0200 (10)
O10.7142 (8)0.5573 (5)0.9516 (5)0.0228 (10)
O70.5714 (9)0.9762 (6)1.1684 (5)0.0332 (13)
C60.7318 (12)0.4932 (8)0.6786 (8)0.0255 (15)
O30.6553 (9)0.6282 (5)0.6621 (5)0.0276 (11)
C80.5595 (11)0.9416 (7)1.0579 (7)0.0205 (14)
O60.6333 (8)0.8228 (5)1.0278 (5)0.0278 (11)
C70.3857 (10)0.9806 (7)0.5168 (7)0.0162 (13)
O50.2701 (8)1.0470 (5)0.4234 (5)0.0243 (11)
C10.7310 (10)0.4252 (8)0.9513 (7)0.0204 (14)
N10.7737 (11)0.4446 (7)0.5575 (7)0.0350 (15)
H10.74130.50520.47680.042*
C20.7787 (11)0.3863 (7)0.8109 (7)0.0222 (14)
C30.8671 (14)0.2456 (9)0.8087 (9)0.0353 (18)
H30.89700.17600.89540.042*
C50.8633 (15)0.3065 (10)0.5567 (10)0.044 (2)
H50.89090.28160.46930.053*
C40.9127 (16)0.2052 (10)0.6788 (10)0.051 (3)
H40.97560.11070.67750.061*
O20.7138 (8)0.3183 (5)1.0690 (5)0.0232 (10)
O1W0.9535 (9)0.7979 (7)0.7825 (6)0.0398 (14)
H1W1.03270.74100.84170.060*
H2W1.02340.86150.71770.060*
O2W0.7275 (12)0.5642 (8)0.2640 (7)0.0591 (19)
H3W0.68540.64420.28770.089*
H4W0.73130.58120.17250.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Dy10.01446 (19)0.01602 (18)0.01286 (17)0.00079 (12)0.00214 (11)0.00175 (12)
O40.018 (3)0.023 (2)0.015 (2)0.007 (2)0.0030 (18)0.0031 (18)
O10.029 (3)0.020 (2)0.017 (2)0.001 (2)0.0044 (19)0.0022 (19)
O70.046 (4)0.029 (3)0.027 (3)0.009 (2)0.018 (2)0.011 (2)
C60.027 (4)0.026 (4)0.024 (4)0.006 (3)0.000 (3)0.009 (3)
O30.038 (3)0.025 (3)0.019 (2)0.003 (2)0.007 (2)0.008 (2)
C80.018 (4)0.019 (3)0.022 (3)0.000 (3)0.002 (3)0.004 (3)
O60.035 (3)0.023 (3)0.026 (3)0.008 (2)0.013 (2)0.009 (2)
C70.012 (4)0.016 (3)0.018 (3)0.002 (3)0.000 (2)0.004 (3)
O50.019 (3)0.027 (3)0.021 (2)0.006 (2)0.0065 (19)0.005 (2)
C10.008 (3)0.027 (4)0.022 (3)0.006 (3)0.001 (2)0.000 (3)
N10.041 (4)0.037 (4)0.028 (3)0.004 (3)0.001 (3)0.015 (3)
C20.016 (4)0.022 (3)0.027 (4)0.003 (3)0.001 (3)0.007 (3)
C30.036 (5)0.029 (4)0.038 (4)0.006 (4)0.003 (4)0.009 (3)
C50.048 (6)0.049 (5)0.041 (5)0.006 (4)0.006 (4)0.029 (4)
C40.063 (7)0.034 (5)0.053 (6)0.001 (5)0.009 (5)0.021 (4)
O20.019 (3)0.021 (2)0.022 (2)0.001 (2)0.0043 (19)0.0049 (19)
O1W0.022 (3)0.054 (4)0.029 (3)0.010 (3)0.009 (2)0.015 (3)
O2W0.067 (5)0.070 (5)0.039 (4)0.019 (4)0.015 (3)0.004 (3)
Geometric parameters (Å, º) top
Dy1—O32.289 (5)C7—O51.244 (8)
Dy1—O1W2.352 (5)C7—C7ii1.549 (12)
Dy1—O2i2.357 (5)C1—O21.277 (8)
Dy1—O12.364 (4)C1—C21.488 (9)
Dy1—O5ii2.366 (4)N1—C51.353 (11)
Dy1—O7iii2.391 (5)N1—H10.8600
Dy1—O62.402 (5)C2—C31.377 (11)
Dy1—O42.415 (4)C3—C41.398 (12)
O4—C71.247 (8)C3—H30.9300
O1—C11.250 (8)C5—C41.336 (13)
O7—C81.239 (8)C5—H50.9300
C6—O31.275 (9)C4—H40.9300
C6—N11.361 (9)O1W—H1W0.8500
C6—C21.424 (10)O1W—H2W0.8490
C8—O61.255 (8)O2W—H3W0.8534
C8—C8iii1.547 (13)O2W—H4W0.8503
O3—Dy1—O1W90.9 (2)N1—C6—C2115.8 (7)
O3—Dy1—O2i90.55 (18)C6—O3—Dy1136.4 (4)
O1W—Dy1—O2i148.35 (17)O7—C8—O6127.9 (6)
O3—Dy1—O173.20 (16)O7—C8—C8iii116.5 (7)
O1W—Dy1—O175.35 (18)O6—C8—C8iii115.6 (7)
O2i—Dy1—O174.84 (16)C8—O6—Dy1120.2 (4)
O3—Dy1—O5ii81.96 (17)O5—C7—O4126.4 (6)
O1W—Dy1—O5ii67.74 (17)O5—C7—C7ii116.8 (7)
O2i—Dy1—O5ii143.60 (16)O4—C7—C7ii116.8 (7)
O1—Dy1—O5ii134.77 (17)C7—O5—Dy1ii120.1 (4)
O3—Dy1—O7iii148.30 (17)O1—C1—O2122.5 (6)
O1W—Dy1—O7iii105.1 (2)O1—C1—C2120.4 (6)
O2i—Dy1—O7iii89.70 (19)O2—C1—C2117.1 (6)
O1—Dy1—O7iii136.90 (16)C5—N1—C6123.9 (7)
O5ii—Dy1—O7iii79.21 (18)C5—N1—H1118.0
O3—Dy1—O6144.68 (17)C6—N1—H1118.0
O1W—Dy1—O675.02 (19)C3—C2—C6119.6 (7)
O2i—Dy1—O685.84 (17)C3—C2—C1119.9 (7)
O1—Dy1—O671.95 (16)C6—C2—C1120.5 (6)
O5ii—Dy1—O6119.90 (17)C2—C3—C4121.4 (8)
O7iii—Dy1—O666.91 (16)C2—C3—H3119.3
O3—Dy1—O477.17 (17)C4—C3—H3119.3
O1W—Dy1—O4135.23 (16)C4—C5—N1121.4 (8)
O2i—Dy1—O475.68 (15)C4—C5—H5119.3
O1—Dy1—O4137.50 (15)N1—C5—H5119.3
O5ii—Dy1—O467.92 (15)C5—C4—C3117.9 (8)
O7iii—Dy1—O472.20 (16)C5—C4—H4121.0
O6—Dy1—O4134.95 (16)C3—C4—H4121.0
C7—O4—Dy1118.2 (4)C1—O2—Dy1i128.1 (4)
C1—O1—Dy1136.4 (4)Dy1—O1W—H1W125.7
C8—O7—Dy1iii120.8 (4)Dy1—O1W—H2W124.6
O3—C6—N1117.2 (6)H1W—O1W—H2W109.7
O3—C6—C2127.0 (6)H3W—O2W—H4W109.6
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2W0.861.992.785 (9)154
O1W—H1W···O2iv0.851.942.732 (7)155
O1W—H2W···O4v0.852.072.751 (7)137
O2W—H4W···O1vi0.852.263.080 (8)163
O2W—H4W···O6vi0.852.362.878 (8)120
Symmetry codes: (iv) x+2, y+1, z+2; (v) x+1, y, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Dy(C6H4NO3)(C2O4)(H2O)]·H2O
Mr424.65
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.5359 (15), 9.561 (2), 9.734 (2)
α, β, γ (°)71.906 (2), 78.800 (3), 80.305 (2)
V3)563.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)6.68
Crystal size (mm)0.17 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(APEX2; Bruker, 2004)
Tmin, Tmax0.397, 0.455
No. of measured, independent and
observed [I > 2σ(I)] reflections
2926, 2003, 1888
Rint0.021
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.09
No. of reflections2003
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.29, 1.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2W0.861.992.785 (9)153.9
O1W—H1W···O2i0.851.942.732 (7)154.8
O1W—H2W···O4ii0.852.072.751 (7)137.4
O2W—H4W···O1iii0.852.263.080 (8)162.9
O2W—H4W···O6iii0.852.362.878 (8)119.9
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+1, y, z; (iii) x, y, z1.
 

Acknowledgements

The authors acknowledge South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, R.-H., Qiu, Y.-C., Cai, Y.-P., Wu, J.-Z. & Deng, H. (2007). Acta Cryst. E63, m1666.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m177-m178
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds