organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,2′-(p-phenyl­enedi­­oxy)­di­acetate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Light Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: kingwell2004@sina.com.cn

(Received 11 January 2009; accepted 23 January 2009; online 28 January 2009)

The title compound, C12H14O6, was prepared by the Williamson reaction of 1,4-dihydroxy­benzene and methyl chloro­acetate with phase-transfer catalysis. The compound lies on an inversion center. The structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For details of the synthesis procedure and the applications of benzothia­zoles, see: Chakraborti et al. (2004[Chakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851-855.]); Seijas et al. (2007[Seijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313-317.]); Wang et al. (2009[Wang, G., Wu, L., Zhuang, L. & Wang, J. (2009). Acta Cryst. E65, o158.]). For details of the synthesis procedure and the applications of aryl­oxyacetic acids, see: Nagy et al. (1997[Nagy, C., Filip, S. V., Surducan, E. & Surducan, V. (1997). Synth. Commun. 27, 3729-3736.]); Wei et al. (2005[Wei, T. B., Liu, H., Li, M. L. & Zhang, Y. M. (2005). Synth. Commun. 35, 1759-1764.]). For the use of phase-transfer catalysis in organic synthesis, see: Perreux et al. (2001[Perreux, L. & Loupy, A. (2001). Tetrahedron, 57, 7957-7966.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14O6

  • Mr = 254.23

  • Monoclinic, P 21 /n

  • a = 7.4190 (15) Å

  • b = 7.0990 (14) Å

  • c = 11.785 (2) Å

  • β = 95.49 (3)°

  • V = 617.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.954, Tmax = 0.977

  • 1123 measured reflections

  • 1123 independent reflections

  • 769 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.173

  • S = 1.00

  • 1123 reflections

  • 82 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C3/C1A–C3A ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6CCg1i 0.97 2.98 3.674 (2) 130
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of aryloxyacetic acids and their derivatives constitute a class of compounds for both biological activity and plant growth regulators (Nagy et al., 1997; Wei et al.,2005). The phase-transfer catalysis, with the advantages of simple experimental operations, mild reaction conditions, and inexpensive and environmentally benign reagents, has established its significance in organic synthesis as one of the most useful methods for the acceleration of heterogeneous reactions (Perreux & Loupy, 2001).

Benzothiazole are remarkable heterocyclic ring systems. They have been found to exhibit a wide spectrum of biological activities. Many kinds of 2-substituted benzothiazoles are utilized as vulcanization accelators in the manufacture of rubber,as fluorescent brightening agents in textile dyeing,and in the leather industry (Chakraborti et al.,2004; Seijas et al.,2007; Wang et al.,2009). There are numerous synthetic methods to produce 2-arylbenzothiazoles. The most important ones include the reaction of o-aminothiophenols with benzoic acids or their derivatives (Chakraborti et al.,2004; Seijas et al.,2007; Wang et al.,2009). We are focusing on the synthesis of new products of bisbenzothiazole. We here report the crystal structure of the title compound (I).

The compound (I) lies on an inversion center(Fig.1). All bond lengths are within normal ranges (Allen et al., 1987). There are no typical hydrogen bonds, while weak intermolecular C—H···π interactions involving benzene ring (C1/C3/C2/C1a/C3a/C2a) (Table 1) may help in stabilizing the structure.

Related literature top

For details of the synthesis procedure and the applications of benzothiazoles, see: Chakraborti et al. (2004); Seijas et al. (2007); Wang et al. (2009). For details of the synthesis procedure and the applications of aryloxyacetic acids, see: Nagy et al. (1997); Wei et al. (2005). For the use of phase-transfer catalysis in organic synthesis, see: Perreux et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

5.5 g (0.05 mole) hydroquinone was dissolved in 50 ml acetone, 6.9 g (0.05 mole) potassium carbonate, potassium iodide 0.8 g and tetrabutyl ammonium bromide 1.0 g were added. Then 8.8 ml L (0.10 mole) of methyl chloroacetate was dropped into the mixture. The mixture was boiled for 5 h with intensive stirring, cooled to room temperature, and filtered. The organic solution was evaporated under vacuum to dryness and the dry residue was recrystallized from methanol to obtain title compound. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of ethyl acetate. 1H NMR (CDCl3, δ, p.p.m.) 6.85 (m, 4H), 4.58 (s, 4H), 3.79 (s,6H).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent C atoms with C—H = 0.93 Å (aromatic), 0.97Å (methylene) and 0.96Å (methyl) with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and 1.2 for aromatic and methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [symmetry code: (A) 1/2-x, 1/2+y, 1/2-z].
Dimethyl 2,2'-(p-phenylenedioxy)diacetate top
Crystal data top
C12H14O6F(000) = 268
Mr = 254.23Dx = 1.367 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 27 reflections
a = 7.4190 (15) Åθ = 1–25°
b = 7.0990 (14) ŵ = 0.11 mm1
c = 11.785 (2) ÅT = 293 K
β = 95.49 (3)°Block, yellow
V = 617.8 (2) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
769 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 3.1°
ω/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.954, Tmax = 0.977l = 014
1123 measured reflections3 standard reflections every 200 reflections
1123 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.23P]
where P = (Fo2 + 2Fc2)/3
1123 reflections(Δ/σ)max = 0.001
82 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C12H14O6V = 617.8 (2) Å3
Mr = 254.23Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.4190 (15) ŵ = 0.11 mm1
b = 7.0990 (14) ÅT = 293 K
c = 11.785 (2) Å0.30 × 0.20 × 0.10 mm
β = 95.49 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
769 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.954, Tmax = 0.9773 standard reflections every 200 reflections
1123 measured reflections intensity decay: 9%
1123 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.00Δρmax = 0.26 e Å3
1123 reflectionsΔρmin = 0.24 e Å3
82 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.1983 (3)0.2968 (2)0.07350 (16)0.0520 (6)
O21.3969 (3)0.5931 (3)0.13385 (19)0.0636 (7)
O31.6159 (2)0.3997 (3)0.17937 (17)0.0531 (6)
C10.8429 (3)0.0447 (3)0.0519 (2)0.0431 (7)
H1A0.73820.07340.08590.052*
C20.9507 (3)0.1863 (4)0.0139 (2)0.0444 (7)
H2A0.91860.31140.02350.053*
C31.1039 (3)0.1452 (4)0.0376 (2)0.0425 (7)
C41.3668 (3)0.2569 (4)0.1199 (2)0.0460 (7)
H4A1.34490.18440.18960.055*
H4B1.44560.18450.06580.055*
C51.4535 (3)0.4417 (4)0.1439 (2)0.0441 (7)
C61.7243 (4)0.5536 (4)0.2101 (3)0.0617 (8)
H6A1.83500.50670.23540.093*
H6B1.75130.63400.14520.093*
H6C1.65950.62400.27050.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0553 (11)0.0450 (11)0.0577 (12)0.0023 (9)0.0163 (9)0.0020 (9)
O20.0667 (14)0.0491 (12)0.0760 (16)0.0059 (10)0.0130 (11)0.0036 (11)
O30.0517 (11)0.0536 (12)0.0555 (12)0.0040 (9)0.0125 (9)0.0034 (9)
C10.0441 (14)0.0464 (14)0.0381 (14)0.0046 (11)0.0002 (10)0.0050 (11)
C20.0433 (14)0.0448 (14)0.0444 (16)0.0021 (11)0.0006 (11)0.0049 (12)
C30.0451 (14)0.0459 (14)0.0356 (14)0.0001 (11)0.0011 (11)0.0007 (11)
C40.0395 (13)0.0500 (15)0.0473 (15)0.0007 (11)0.0018 (11)0.0007 (12)
C50.0519 (15)0.0476 (15)0.0314 (13)0.0028 (12)0.0031 (11)0.0023 (11)
C60.0703 (19)0.0603 (18)0.0553 (18)0.0192 (15)0.0100 (14)0.0034 (15)
Geometric parameters (Å, º) top
O1—C31.372 (3)C2—C31.370 (4)
O1—C41.440 (3)C2—H2A0.9300
O2—C51.164 (3)C4—C51.499 (4)
O3—C51.347 (3)C4—H4A0.9700
O3—C61.424 (3)C4—H4B0.9700
C1—C21.385 (4)C6—H6A0.9600
C1—C3i1.419 (3)C6—H6B0.9600
C1—H1A0.9300C6—H6C0.9600
C3—O1—C4116.7 (2)C5—C4—H4A110.2
C5—O3—C6116.9 (2)O1—C4—H4B110.2
C2—C1—C3i118.4 (2)C5—C4—H4B110.2
C2—C1—H1A120.8H4A—C4—H4B108.5
C3i—C1—H1A120.8O2—C5—O3125.3 (3)
C3—C2—C1121.2 (2)O2—C5—C4128.6 (3)
C3—C2—H2A119.4O3—C5—C4106.1 (2)
C1—C2—H2A119.4O3—C6—H6A109.5
C2—C3—O1116.0 (2)O3—C6—H6B109.5
C2—C3—C1i120.4 (2)H6A—C6—H6B109.5
O1—C3—C1i123.5 (2)O3—C6—H6C109.5
O1—C4—C5107.6 (2)H6A—C6—H6C109.5
O1—C4—H4A110.2H6B—C6—H6C109.5
C3i—C1—C2—C30.9 (4)C3—O1—C4—C5175.2 (2)
C1—C2—C3—O1178.9 (2)C6—O3—C5—O21.9 (4)
C1—C2—C3—C1i0.9 (4)C6—O3—C5—C4178.7 (2)
C4—O1—C3—C2175.4 (2)O1—C4—C5—O23.6 (4)
C4—O1—C3—C1i4.8 (4)O1—C4—C5—O3175.74 (19)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···Cg1ii0.972.983.674 (2)130
Symmetry code: (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H14O6
Mr254.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.4190 (15), 7.0990 (14), 11.785 (2)
β (°) 95.49 (3)
V3)617.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.954, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
1123, 1123, 769
Rint0.000
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.00
No. of reflections1123
No. of parameters82
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···Cg1i0.972.983.674 (2)130
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChakraborti, A. K., Selvam, C., Kaur, G. & Bhagat, S. (2004). Synlett, pp. 851–855.  Web of Science CrossRef Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNagy, C., Filip, S. V., Surducan, E. & Surducan, V. (1997). Synth. Commun. 27, 3729–3736.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerreux, L. & Loupy, A. (2001). Tetrahedron, 57, 7957–7966.  Web of Science CrossRef Google Scholar
First citationSeijas, J. A., Vazquez, T. M. P., Carballido, R. M. R., Crecente, C. J. & Romar, L. L. (2007). Synlett, pp. 313–317.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G., Wu, L., Zhuang, L. & Wang, J. (2009). Acta Cryst. E65, o158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWei, T. B., Liu, H., Li, M. L. & Zhang, Y. M. (2005). Synth. Commun. 35, 1759–1764.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds