organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(4R,17S,18R,26R)-Ethyl 4′-meth­oxy­carbonyl-5′′-(4-meth­oxy­phen­yl)-1′-methyl-2,3′′-dioxo-2′′,3′′-di­hydro­indoline-3-spiro-2′-pyrrolidine-3′-spiro-2′′-thia­zolo[3,2-a]pyrimidine-6′′-carboxyl­ate

aDepartment of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
*Correspondence e-mail: houzhaohui1972@163.com

(Received 15 January 2009; accepted 21 January 2009; online 28 January 2009)

In the title compound, C30H30N4O7S, the two spiro junctions link a planar 2-oxindole ring [with a mean deviation from the plane of 0.0319 (3) Å, a pyrrolidine ring in an envelope conformation and a thia­zolo[3,2-a]pyrimidine system. Two mol­ecules are connected into a dimer by two N—H⋯O hydrogen bonds, forming an R22(8) graph-set motif. The title compound has four stereogenic centers and appears as a racemic mixture of one single diastereoisomer (RSRR/SRSS).

Related literature

For related literature on spiro compounds, see: Caramella & Grunanger (1984[Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291-312. New York: Wiley.]); James et al. (1991[James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron 47, 6617-6622.]). For structural discussion, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]); Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C30H30N4O7S

  • Mr = 590.64

  • Triclinic, [P \overline 1]

  • a = 9.944 (2) Å

  • b = 11.389 (2) Å

  • c = 13.417 (3) Å

  • α = 98.06 (3)°

  • β = 107.36 (3)°

  • γ = 101.00 (3)°

  • V = 1391.8 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 113 (2) K

  • 0.20 × 0.18 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.977

  • 10220 measured reflections

  • 4881 independent reflections

  • 3700 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.06

  • 4881 reflections

  • 384 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.86 1.97 2.8189 (18) 169
Symmetry code: (i) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger,1984). In this paper, the structure of the title compound (I) is reported. The compound was synthesized by the intermolecular [3 + 2] cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and (2Z)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate.

In the title compound, C30H30N4O7S, the two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an half-chair conformation and a thiazolo[3,2-a]pyrimidine ring (Fig. 1). The pyrrolidine ring (N4/C27/C26/C17/C18) has a half-chair conformation with puckering parameters, Q(2)= 0.4780 (18)Å and ϕ(2)= 47.9° (Cremer & Pople, 1975). The 2-oxindole ring (N3/C25/C18/C19/C20/C21/C22/C23/C24) is nearly planar with the mean deviation from this plane being 0.032 (3)%A.

Two molecules are connected into a dimer by two N—H···O hydrogen bonds forming a ring with a R22(8) graph set motif (Etter, 1990; Bernstein et al., 1994) (Table 1, Fig. 2).

The title compound has 4 stereogenic centers and then appears as a racemic mixture of one single diastereoisomer (RSRR/SRSS).

Related literature top

For related literature on spiro compounds, see: Caramella & Grunanger (1984); James et al. (1991); Kobayashi et al. (1991). For structural discussion, see: Cremer & Pople (1975); Etter (1990); Bernstein et al. (1994).

Experimental top

A mixture of (2Z)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate(1 mmol), isatin(1 mmol) and sarcosine(1 mmol) were refluxed in methanol (60 ml) until the disappearence of the starting material as evidenced by the TLC. After the reaction was over, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethylacetate=5:1) to give the title compound (I).

m.p.497 K; 1H-NMR (δ, p.p.m.): 1.01–1.02(m, 3H), 2.06 (s, 3H), 2.35(s, 3H), 3.05(s, 3H), 3.39–3.40 (m, 1H), 3.60–3.63 (m, 1H), 3.90–3.92(m, 2H), 4.81–4.85(m, 1H), 5.76(s, 1H), 6.74–6.76(m, 1H), 6.96–6.99(m, 1H), 7.20–7.26(m, 5H), 7.58–7.60(m, 1H), 7.62 (bs, 1H, –NH);

20 mg of (I) was dissolved in 15 ml dioxane-ethyl acetate mixed solvent; the solution was kept at room temperature for 15 d by natural evaporation to give colorless single crystals of (I), suitable for X-Ray analysis.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96Å (methyl), 0.97Å (methylene), 0.98Å (methine) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methine).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Partial packing view showing the formation of dimer through N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x, 1-y, -z]
rac-(4R,17S,18R,26R)-Ethyl 4'-methoxycarbonyl-5''-(4-methoxyphenyl)-1'-methyl-2,3''-dioxo-2'',3''- dihydroindoline-3-spiro-2'-pyrrolidine-3'-spiro-2''-thiazolo[3,2-a]pyrimidine- 6''-carboxylate top
Crystal data top
C30H30N4O7SZ = 2
Mr = 590.64F(000) = 620
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.944 (2) ÅCell parameters from 4258 reflections
b = 11.389 (2) Åθ = 1.8–27.9°
c = 13.417 (3) ŵ = 0.17 mm1
α = 98.06 (3)°T = 113 K
β = 107.36 (3)°Block, colourless
γ = 101.00 (3)°0.20 × 0.18 × 0.08 mm
V = 1391.8 (6) Å3
Data collection top
Rigaku Saturn
diffractometer
4881 independent reflections
Radiation source: rotating anode3700 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
h = 1111
Tmin = 0.956, Tmax = 0.977k = 1310
10220 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0589P)2]
where P = (Fo2 + 2Fc2)/3
4881 reflections(Δ/σ)max < 0.001
384 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C30H30N4O7Sγ = 101.00 (3)°
Mr = 590.64V = 1391.8 (6) Å3
Triclinic, P1Z = 2
a = 9.944 (2) ÅMo Kα radiation
b = 11.389 (2) ŵ = 0.17 mm1
c = 13.417 (3) ÅT = 113 K
α = 98.06 (3)°0.20 × 0.18 × 0.08 mm
β = 107.36 (3)°
Data collection top
Rigaku Saturn
diffractometer
4881 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2001)
3700 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.977Rint = 0.029
10220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
4881 reflectionsΔρmin = 0.22 e Å3
384 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.04156 (5)0.35302 (4)0.42322 (3)0.02231 (13)
O10.32486 (14)0.13252 (12)0.32935 (11)0.0354 (3)
O20.26663 (13)0.05624 (11)0.18117 (10)0.0281 (3)
O30.42217 (12)0.30677 (11)0.05644 (10)0.0316 (3)
O40.02319 (12)0.24227 (10)0.12268 (9)0.0236 (3)
O50.11369 (12)0.48453 (10)0.08582 (8)0.0218 (3)
O60.27264 (14)0.17208 (12)0.27772 (13)0.0429 (4)
O70.39268 (13)0.31585 (11)0.30007 (10)0.0328 (3)
N10.16597 (15)0.16869 (13)0.46129 (11)0.0241 (3)
N20.07144 (14)0.18849 (12)0.28126 (10)0.0174 (3)
N30.13510 (14)0.52812 (12)0.12989 (11)0.0208 (3)
H30.14060.53090.06740.025*
N40.02410 (14)0.56993 (12)0.32782 (10)0.0182 (3)
C10.3131 (2)0.02959 (19)0.51724 (15)0.0344 (5)
H1A0.35930.02880.49130.052*
H1B0.25120.00830.55260.052*
H1C0.38580.09780.56670.052*
C20.22450 (18)0.07314 (16)0.42587 (14)0.0229 (4)
C30.20286 (17)0.03199 (15)0.32123 (14)0.0213 (4)
C40.09652 (17)0.07312 (14)0.23379 (13)0.0189 (4)
H40.14030.08860.17900.023*
C50.10029 (17)0.22161 (15)0.39038 (13)0.0199 (4)
C60.27164 (17)0.06142 (16)0.28186 (15)0.0239 (4)
C70.3202 (2)0.14574 (17)0.12533 (16)0.0364 (5)
H7A0.24390.22010.09130.044*
H7B0.40110.16600.17520.044*
C80.3682 (2)0.09030 (19)0.04354 (17)0.0391 (5)
H8A0.28800.06850.00410.059*
H8B0.40140.14830.00370.059*
H8C0.44590.01840.07830.059*
C90.04382 (17)0.02596 (14)0.18261 (13)0.0181 (4)
C100.07297 (18)0.10076 (15)0.08378 (13)0.0212 (4)
H100.00790.08670.04680.025*
C110.19697 (18)0.19597 (15)0.03911 (14)0.0250 (4)
H110.21410.24600.02670.030*
C120.29533 (17)0.21597 (15)0.09342 (14)0.0232 (4)
C130.26702 (18)0.14307 (16)0.19270 (14)0.0248 (4)
H130.33210.15740.22970.030*
C140.14238 (17)0.04920 (15)0.23686 (13)0.0216 (4)
H140.12400.00090.30370.026*
C150.4605 (2)0.3746 (2)0.04918 (17)0.0525 (6)
H15A0.46430.31960.09750.079*
H15B0.55400.43050.06850.079*
H15C0.38910.41950.05310.079*
C160.00520 (17)0.26045 (14)0.21851 (13)0.0182 (4)
C170.02451 (17)0.36688 (15)0.28420 (12)0.0179 (4)
C180.04721 (17)0.49640 (14)0.27189 (12)0.0177 (4)
C190.21177 (17)0.53663 (14)0.31052 (13)0.0190 (4)
C200.31437 (18)0.56616 (16)0.41158 (14)0.0244 (4)
H200.28640.55860.47110.029*
C210.46058 (18)0.60752 (16)0.42303 (15)0.0275 (4)
H210.53040.62640.49070.033*
C220.50340 (18)0.62089 (16)0.33501 (15)0.0262 (4)
H220.60160.64800.34430.031*
C230.40141 (17)0.59426 (15)0.23323 (14)0.0227 (4)
H230.42910.60390.17390.027*
C240.25706 (17)0.55281 (14)0.22340 (13)0.0194 (4)
C250.00866 (18)0.49965 (14)0.14971 (13)0.0187 (4)
C260.18551 (17)0.37201 (15)0.25039 (13)0.0197 (4)
H260.22050.35850.17230.024*
C270.17881 (17)0.50704 (15)0.29251 (13)0.0208 (4)
H27A0.23520.54090.23640.025*
H27B0.21610.51450.35160.025*
C280.00420 (19)0.69933 (15)0.32462 (14)0.0244 (4)
H28A0.10710.73490.35240.037*
H28B0.04240.74010.36720.037*
H28C0.03340.70830.25220.037*
C290.28448 (18)0.27477 (16)0.27959 (14)0.0257 (4)
C300.5040 (2)0.22464 (19)0.31518 (18)0.0452 (6)
H30A0.54140.15750.25450.068*
H30B0.58130.26040.32250.068*
H30C0.46280.19560.37850.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0323 (3)0.0206 (2)0.0145 (2)0.00589 (18)0.00909 (19)0.00318 (18)
O10.0359 (8)0.0347 (8)0.0425 (8)0.0188 (6)0.0128 (7)0.0170 (7)
O20.0311 (7)0.0284 (7)0.0330 (7)0.0159 (6)0.0164 (6)0.0083 (6)
O30.0246 (7)0.0246 (7)0.0345 (7)0.0027 (5)0.0041 (6)0.0046 (6)
O40.0335 (7)0.0232 (6)0.0143 (6)0.0093 (5)0.0074 (5)0.0024 (5)
O50.0213 (6)0.0286 (7)0.0150 (6)0.0065 (5)0.0048 (5)0.0057 (5)
O60.0429 (8)0.0239 (7)0.0705 (11)0.0051 (6)0.0322 (8)0.0122 (7)
O70.0267 (7)0.0302 (7)0.0435 (8)0.0003 (6)0.0213 (7)0.0026 (6)
N10.0255 (8)0.0268 (8)0.0190 (7)0.0050 (6)0.0058 (7)0.0065 (7)
N20.0198 (7)0.0160 (7)0.0159 (7)0.0036 (6)0.0062 (6)0.0025 (6)
N30.0227 (8)0.0270 (8)0.0153 (7)0.0064 (6)0.0090 (6)0.0064 (6)
N40.0219 (7)0.0164 (7)0.0177 (7)0.0047 (6)0.0094 (6)0.0019 (6)
C10.0336 (11)0.0395 (11)0.0282 (10)0.0130 (9)0.0036 (9)0.0103 (9)
C20.0182 (9)0.0241 (9)0.0269 (9)0.0038 (7)0.0070 (8)0.0108 (8)
C30.0148 (8)0.0214 (9)0.0276 (9)0.0025 (7)0.0066 (8)0.0091 (8)
C40.0197 (9)0.0181 (8)0.0197 (8)0.0055 (7)0.0083 (7)0.0019 (7)
C50.0212 (9)0.0204 (9)0.0164 (8)0.0005 (7)0.0066 (7)0.0043 (7)
C60.0141 (9)0.0219 (9)0.0326 (10)0.0006 (7)0.0061 (8)0.0065 (8)
C70.0389 (12)0.0299 (10)0.0495 (13)0.0199 (9)0.0216 (11)0.0070 (10)
C80.0419 (12)0.0425 (12)0.0411 (12)0.0189 (10)0.0223 (11)0.0054 (10)
C90.0190 (9)0.0166 (8)0.0194 (8)0.0070 (7)0.0053 (7)0.0045 (7)
C100.0240 (9)0.0220 (9)0.0203 (8)0.0079 (7)0.0092 (8)0.0053 (7)
C110.0307 (10)0.0217 (9)0.0188 (9)0.0069 (8)0.0049 (8)0.0011 (8)
C120.0183 (9)0.0182 (9)0.0275 (9)0.0042 (7)0.0014 (8)0.0012 (8)
C130.0218 (9)0.0248 (9)0.0295 (10)0.0056 (7)0.0130 (8)0.0012 (8)
C140.0224 (9)0.0192 (9)0.0208 (9)0.0042 (7)0.0072 (8)0.0020 (7)
C150.0482 (14)0.0483 (14)0.0340 (12)0.0169 (11)0.0018 (11)0.0114 (11)
C160.0169 (8)0.0167 (8)0.0190 (9)0.0003 (7)0.0063 (7)0.0020 (7)
C170.0217 (9)0.0179 (8)0.0125 (8)0.0025 (7)0.0057 (7)0.0016 (7)
C180.0218 (9)0.0172 (8)0.0138 (8)0.0043 (7)0.0063 (7)0.0025 (7)
C190.0215 (9)0.0155 (8)0.0205 (9)0.0056 (7)0.0074 (8)0.0034 (7)
C200.0283 (10)0.0243 (9)0.0200 (9)0.0068 (8)0.0069 (8)0.0053 (8)
C210.0210 (9)0.0296 (10)0.0254 (9)0.0060 (8)0.0005 (8)0.0031 (8)
C220.0181 (9)0.0233 (9)0.0364 (10)0.0067 (7)0.0083 (8)0.0037 (8)
C230.0231 (9)0.0210 (9)0.0261 (9)0.0065 (7)0.0117 (8)0.0025 (8)
C240.0232 (9)0.0163 (8)0.0189 (8)0.0063 (7)0.0069 (7)0.0027 (7)
C250.0258 (10)0.0146 (8)0.0165 (8)0.0046 (7)0.0088 (8)0.0025 (7)
C260.0198 (9)0.0202 (9)0.0185 (8)0.0029 (7)0.0075 (7)0.0019 (7)
C270.0230 (9)0.0222 (9)0.0186 (8)0.0062 (7)0.0091 (8)0.0032 (7)
C280.0300 (10)0.0185 (9)0.0255 (9)0.0059 (7)0.0106 (8)0.0048 (8)
C290.0270 (10)0.0255 (10)0.0241 (9)0.0035 (8)0.0114 (8)0.0012 (8)
C300.0389 (12)0.0398 (12)0.0564 (14)0.0091 (10)0.0317 (12)0.0001 (11)
Geometric parameters (Å, º) top
S1—C51.7542 (17)C9—C141.393 (2)
S1—C171.8239 (17)C10—C111.386 (2)
O1—C61.204 (2)C10—H100.9300
O2—C61.347 (2)C11—C121.388 (2)
O2—C71.4547 (19)C11—H110.9300
O3—C121.375 (2)C12—C131.386 (2)
O3—C151.417 (2)C13—C141.382 (2)
O4—C161.2092 (19)C13—H130.9300
O5—C251.225 (2)C14—H140.9300
O6—C291.195 (2)C15—H15A0.9600
O7—C291.336 (2)C15—H15B0.9600
O7—C301.449 (2)C15—H15C0.9600
N1—C51.279 (2)C16—C171.525 (2)
N1—C21.418 (2)C17—C261.543 (2)
N2—C161.372 (2)C17—C181.565 (2)
N2—C51.386 (2)C18—C191.516 (2)
N2—C41.4763 (19)C18—C251.576 (2)
N3—C251.351 (2)C19—C201.381 (2)
N3—C241.410 (2)C19—C241.395 (2)
N3—H30.8600C20—C211.394 (2)
N4—C281.456 (2)C20—H200.9300
N4—C181.4613 (19)C21—C221.387 (2)
N4—C271.468 (2)C21—H210.9300
C1—C21.489 (3)C22—C231.387 (2)
C1—H1A0.9600C22—H220.9300
C1—H1B0.9600C23—C241.383 (2)
C1—H1C0.9600C23—H230.9300
C2—C31.354 (2)C26—C291.511 (2)
C3—C61.488 (2)C26—C271.544 (2)
C3—C41.522 (2)C26—H260.9800
C4—C91.517 (2)C27—H27A0.9700
C4—H40.9800C27—H27B0.9700
C7—C81.490 (3)C28—H28A0.9600
C7—H7A0.9700C28—H28B0.9600
C7—H7B0.9700C28—H28C0.9600
C8—H8A0.9600C30—H30A0.9600
C8—H8B0.9600C30—H30B0.9600
C8—H8C0.9600C30—H30C0.9600
C9—C101.388 (2)
C5—S1—C1792.62 (8)O3—C15—H15B109.5
C6—O2—C7118.23 (14)H15A—C15—H15B109.5
C12—O3—C15116.59 (14)O3—C15—H15C109.5
C29—O7—C30115.34 (15)H15A—C15—H15C109.5
C5—N1—C2116.85 (14)H15B—C15—H15C109.5
C16—N2—C5117.35 (13)O4—C16—N2123.53 (14)
C16—N2—C4121.33 (13)O4—C16—C17124.42 (15)
C5—N2—C4120.99 (14)N2—C16—C17112.04 (13)
C25—N3—C24112.18 (13)C16—C17—C26114.29 (13)
C25—N3—H3123.9C16—C17—C18114.60 (12)
C24—N3—H3123.9C26—C17—C18100.14 (13)
C28—N4—C18116.07 (12)C16—C17—S1106.54 (11)
C28—N4—C27114.43 (13)C26—C17—S1110.98 (11)
C18—N4—C27107.91 (12)C18—C17—S1110.29 (11)
C2—C1—H1A109.5N4—C18—C19115.48 (13)
C2—C1—H1B109.5N4—C18—C1799.08 (11)
H1A—C1—H1B109.5C19—C18—C17117.85 (14)
C2—C1—H1C109.5N4—C18—C25113.92 (13)
H1A—C1—H1C109.5C19—C18—C25101.49 (12)
H1B—C1—H1C109.5C17—C18—C25109.54 (13)
C3—C2—N1122.34 (16)C20—C19—C24119.01 (15)
C3—C2—C1126.15 (16)C20—C19—C18131.99 (14)
N1—C2—C1111.49 (15)C24—C19—C18108.80 (14)
C2—C3—C6123.73 (17)C19—C20—C21118.98 (16)
C2—C3—C4121.49 (15)C19—C20—H20120.5
C6—C3—C4114.66 (14)C21—C20—H20120.5
N2—C4—C9111.87 (12)C22—C21—C20121.00 (17)
N2—C4—C3108.35 (13)C22—C21—H21119.5
C9—C4—C3110.37 (13)C20—C21—H21119.5
N2—C4—H4108.7C23—C22—C21120.73 (15)
C9—C4—H4108.7C23—C22—H22119.6
C3—C4—H4108.7C21—C22—H22119.6
N1—C5—N2126.15 (15)C24—C23—C22117.44 (15)
N1—C5—S1122.36 (13)C24—C23—H23121.3
N2—C5—S1111.45 (13)C22—C23—H23121.3
O1—C6—O2123.06 (16)C23—C24—C19122.81 (16)
O1—C6—C3127.42 (17)C23—C24—N3127.24 (15)
O2—C6—C3109.52 (15)C19—C24—N3109.84 (14)
O2—C7—C8107.49 (15)O5—C25—N3126.46 (15)
O2—C7—H7A110.2O5—C25—C18125.94 (13)
C8—C7—H7A110.2N3—C25—C18107.53 (14)
O2—C7—H7B110.2C29—C26—C17115.01 (14)
C8—C7—H7B110.2C29—C26—C27117.66 (13)
H7A—C7—H7B108.5C17—C26—C27103.79 (13)
C7—C8—H8A109.5C29—C26—H26106.5
C7—C8—H8B109.5C17—C26—H26106.5
H8A—C8—H8B109.5C27—C26—H26106.5
C7—C8—H8C109.5N4—C27—C26104.93 (13)
H8A—C8—H8C109.5N4—C27—H27A110.8
H8B—C8—H8C109.5C26—C27—H27A110.8
C10—C9—C14118.29 (14)N4—C27—H27B110.8
C10—C9—C4120.96 (13)C26—C27—H27B110.8
C14—C9—C4120.62 (14)H27A—C27—H27B108.8
C11—C10—C9121.39 (15)N4—C28—H28A109.5
C11—C10—H10119.3N4—C28—H28B109.5
C9—C10—H10119.3H28A—C28—H28B109.5
C10—C11—C12119.42 (15)N4—C28—H28C109.5
C10—C11—H11120.3H28A—C28—H28C109.5
C12—C11—H11120.3H28B—C28—H28C109.5
O3—C12—C13115.67 (15)O6—C29—O7124.42 (16)
O3—C12—C11124.42 (15)O6—C29—C26124.14 (15)
C13—C12—C11119.90 (15)O7—C29—C26111.27 (15)
C14—C13—C12120.14 (15)O7—C30—H30A109.5
C14—C13—H13119.9O7—C30—H30B109.5
C12—C13—H13119.9H30A—C30—H30B109.5
C13—C14—C9120.84 (15)O7—C30—H30C109.5
C13—C14—H14119.6H30A—C30—H30C109.5
C9—C14—H14119.6H30B—C30—H30C109.5
O3—C15—H15A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.861.972.8189 (18)169
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC30H30N4O7S
Mr590.64
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.944 (2), 11.389 (2), 13.417 (3)
α, β, γ (°)98.06 (3), 107.36 (3), 101.00 (3)
V3)1391.8 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.20 × 0.18 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2001)
Tmin, Tmax0.956, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
10220, 4881, 3700
Rint0.029
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.06
No. of reflections4881
No. of parameters384
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.22

Computer programs: CrystalClear (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.861.972.8189 (18)168.5
Symmetry code: (i) x, y+1, z.
 

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationCaramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJames, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds