organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3RS)-S-[1-(3-Chloro­phen­yl)-2-oxopyr­rolidin-3-yl]-N,N′-di­methyl­thio­uronium bromide

aInstitute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, nám. Čs. legií 565, Pardubice 532 10, Czech Republic, and bDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, nám. Čs. legií 565, Pardubice 532 10, Czech Republic
*Correspondence e-mail: jiri.hanusek@upce.cz

(Received 16 October 2008; accepted 16 January 2009; online 28 January 2009)

The title mol­ecule, C13H17ClN3OS+·Br, consists of benzene and pyrrolidine rings and an S–C(NHCH3)2 group. The central C—N bond lengths in the S–C(NHCH3)2 fragment indicate partial double-bond character. Mol­ecules are inter­connected into chains by N—H⋯Br hydrogen bonds and the chains are linked into pairs by weak C—H⋯Br hydrogen bonds.

Related literature

For the reactivity of the title compound, see: Hanusek et al. (2004[Hanusek, J., Hejtmánková, L., Štěrba, V. & Sedlák, M. (2004). Org. Biomol. Chem. 2, 1756-1763.]); Sedlák et al. (2002[Sedlák, M., Hejtmánková, L., Hanusek, J. & Macháček, V. (2002). J. Heterocycl. Chem. 39, 1105-1107.], 2003[Sedlák, M., Hanusek, J., Hejtmánková, L. & Kašparová, P. (2003). Org. Biomol. Chem. 1, 1204-1209.]). For a related structure, see: Hanusek et al. (2009[Hanusek, J., Sedlák, M., Drabina, P. & Ružička, A. (2009). Acta Cryst. E65, o411-o412.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17ClN3OS+·Br

  • Mr = 378.72

  • Monoclinic, P 21 /c

  • a = 14.9409 (9) Å

  • b = 7.7050 (5) Å

  • c = 13.9141 (15) Å

  • β = 100.758 (7)°

  • V = 1573.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 150 (2) K

  • 0.41 × 0.40 × 0.22 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.401, Tmax = 0.658

  • 11628 measured reflections

  • 3455 independent reflections

  • 2671 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.114

  • S = 1.22

  • 3455 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯Br1i 0.80 (5) 2.56 (5) 3.314 (4) 159 (5)
N2—H2⋯Br1 0.81 (5) 2.51 (5) 3.303 (4) 170 (5)
C6—H6⋯O1 0.95 2.38 2.899 (5) 114
C8—H8⋯Br1ii 0.95 2.87 3.662 (5) 142
C2—H2ACg1iii 0.99 2.69 3.628 (4) 159
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski and Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In our previous papers we have discussed the reactivity of the title structure (Sedlák et al., 2002, 2003; Hanusek et al., 2004). In continuation of the above mentioned studies, the related crystal structures of the title compound (Scheme 1, Figs. 1 and 2) as well as of the non-methylated analogue (Hanusek et al., 2009) have been determined and the influence of the N-methyl substituents on the crystal structure has been examined.

The respective important distances for the title compound and its non-methylated analogue are 1.770 (4) and 1.749 (4) Å for S1–C11; (1.307 (5), 1.309 (5) Å) and (1.312 (5), 1.296 (5) Å) for C11–N2 and C11–N3. The respective twist angles about the N1–C5 bonds in the title compound and its non-methylated analogue are 28.8 (2) and 7.8 (1)°.

The interplanar angles between the S—C(NHR)2 group and the heterocyclic rings are almost the same in the title compound and its non-methylated analogue (71.3 (1) and 66.7 (1)°). In the S–C(NHCH3)2 fragment of the title compound, the C-N bond-lengths of N2-C11 and N3-C11 (1.309 (5), 1.307 (5) Å, respectively) indicate a partly double bond character.

All the isothiouronium cations that have been studied in the solid state take part in the hydrogen bonding with different anions. (These anions comprise Cl- as well as complex organic anions.) Also in the title compound and its non-methylated analogue such interactions are present. In the title structure, there is a motif N2–H2···Br1···H1–N1 that links the molecules into the infinite chains parallel to the b axis (Fig. 2, Tab. 1). Moreover, the pairs of these chains are interconnected by additional C–H···Br contacts to give columns parallel to the b axis. These pairs of the chains are linked by the virtue of two-fold screw axes. There is also a weak C–H···π-electron interaction with π-electrons of the chlorophenyl ring (Tab. 1).

Related literature top

For reactivity

of the title compound, see: Hanusek et al. (2004); Sedlák et al. (2002, 2003). For a related structure, see: Hanusek et al. (2009). Cg1 is the centroid of the C5–C10 ring.

Experimental top

The title compound was synthesized according to Hanusek et al. (2004) from saturated acetone solutions of the racemic 3-bromo-1-(3-chlorophenyl)pyrrolidin-2-one and N,N'-dimethylthiourea. Single crystals (blocks) suitable for analysis were grown directly from the reaction mixture. Their average size was 0.3×0.3×0.2 mm

Refinement top

All the hydrogens were discernible in the difference electron density map, nevertheless they were situated into the idealized positions. Except for for the H(N) that are involved in the hydrogen bonding and therefore their coordinates were refined without constraints or restraints the rest of the hydrogens were refined riding on their parent C: C–H = 0.95, O.98, 0.99, 1.00 Å for the aryl, methyl, methylene and methine hydrogens, respectively. Uiso(H)=1.2Ueq(C/N) for the H(N), methylene and methine H atoms, while Uiso(H)=1.5Ueq for methyl hydrogens.

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski and Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski and Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski and Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule. The displacement ellipsoids are shown at the 50% probability level. The hydrogens are shown as circles with arbitrary radius.
[Figure 2] Fig. 2. Motif showing the hydrogen bonding in the title structure. Symmetry code for Br1 b: x, 1-y, z.
(3RS)-S-[1-(3-Chlorophenyl)-2-oxopyrrolidin-3-yl]- N,N'-dimethylthiouronium bromide top
Crystal data top
C13H17ClN3OS+·BrF(000) = 768
Mr = 378.72Dx = 1.599 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11663 reflections
a = 14.9409 (9) Åθ = 1–27.5°
b = 7.7050 (5) ŵ = 2.91 mm1
c = 13.9141 (15) ÅT = 150 K
β = 100.758 (7)°Block, colourless
V = 1573.6 (2) Å30.41 × 0.40 × 0.22 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3455 independent reflections
Radiation source: fine-focus sealed tube2671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1916
Absorption correction: gaussian integration
(Coppens, 1970)
k = 89
Tmin = 0.401, Tmax = 0.658l = 1718
11628 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.22 w = 1/[σ2(Fo2) + (0.0325P)2 + 3.4975P]
where P = (Fo2 + 2Fc2)/3
3455 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.82 e Å3
60 constraints
Crystal data top
C13H17ClN3OS+·BrV = 1573.6 (2) Å3
Mr = 378.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9409 (9) ŵ = 2.91 mm1
b = 7.7050 (5) ÅT = 150 K
c = 13.9141 (15) Å0.41 × 0.40 × 0.22 mm
β = 100.758 (7)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3455 independent reflections
Absorption correction: gaussian integration
(Coppens, 1970)
2671 reflections with I > 2σ(I)
Tmin = 0.401, Tmax = 0.658Rint = 0.060
11628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.22Δρmax = 0.74 e Å3
3455 reflectionsΔρmin = 0.82 e Å3
189 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08338 (3)0.66896 (5)0.14195 (3)0.02613 (13)
S10.16212 (7)0.32645 (15)0.36335 (7)0.0259 (2)
Cl10.62396 (8)0.16871 (15)0.42796 (8)0.0356 (3)
N30.1148 (2)0.0146 (5)0.2861 (3)0.0225 (7)
H30.095 (3)0.053 (7)0.245 (3)0.027*
O10.3250 (2)0.1248 (4)0.3000 (2)0.0340 (7)
C10.3345 (3)0.2769 (5)0.3210 (3)0.0219 (8)
N10.4148 (2)0.3623 (4)0.3524 (2)0.0221 (7)
N20.0914 (2)0.2457 (5)0.1804 (3)0.0244 (7)
H20.094 (3)0.350 (7)0.178 (4)0.029*
C110.1189 (2)0.1804 (5)0.2677 (3)0.0207 (8)
C60.5171 (3)0.1131 (5)0.3865 (3)0.0211 (8)
H60.46800.03990.39480.025*
C70.6049 (3)0.0507 (5)0.3989 (3)0.0246 (9)
C100.5754 (3)0.3920 (6)0.3476 (3)0.0261 (9)
H100.56520.51020.32930.031*
C130.1428 (3)0.0649 (6)0.3822 (3)0.0338 (11)
H13A0.20660.03580.40800.051*
H13B0.13620.19120.37630.051*
H13C0.10440.02110.42670.051*
C90.6624 (3)0.3230 (6)0.3608 (3)0.0278 (9)
H90.71180.39450.35130.033*
C40.2588 (3)0.4101 (6)0.3153 (3)0.0244 (9)
H40.23800.44590.24560.029*
C20.4027 (3)0.5482 (5)0.3675 (3)0.0253 (9)
H2A0.41680.61660.31190.030*
H2B0.44210.58830.42860.030*
C50.5029 (3)0.2873 (5)0.3613 (3)0.0214 (8)
C120.0567 (3)0.1404 (6)0.0946 (3)0.0341 (11)
H12A0.10480.06260.08140.051*
H12B0.03720.21630.03810.051*
H12C0.00480.07160.10670.051*
C30.3028 (3)0.5640 (6)0.3739 (4)0.0333 (10)
H3A0.27700.67480.34510.040*
H3B0.29430.55750.44270.040*
C80.6784 (3)0.1510 (6)0.3878 (3)0.0269 (9)
H80.73820.10400.39830.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0262 (2)0.0177 (2)0.0348 (2)0.00117 (17)0.00640 (16)0.00120 (18)
S10.0265 (5)0.0298 (6)0.0225 (5)0.0025 (4)0.0072 (4)0.0046 (4)
Cl10.0406 (6)0.0266 (6)0.0408 (6)0.0100 (5)0.0110 (5)0.0056 (5)
N30.0272 (18)0.0174 (17)0.0243 (17)0.0039 (14)0.0076 (14)0.0040 (14)
O10.0263 (16)0.0280 (17)0.0495 (19)0.0037 (12)0.0118 (14)0.0165 (15)
C10.020 (2)0.024 (2)0.0221 (19)0.0002 (16)0.0055 (15)0.0043 (17)
N10.0251 (17)0.0195 (18)0.0217 (16)0.0013 (14)0.0049 (13)0.0019 (14)
N20.0302 (19)0.0190 (18)0.0231 (17)0.0002 (15)0.0030 (14)0.0019 (16)
C110.0189 (18)0.023 (2)0.0203 (18)0.0039 (16)0.0055 (14)0.0034 (17)
C60.025 (2)0.0185 (19)0.0207 (19)0.0008 (15)0.0072 (15)0.0007 (16)
C70.032 (2)0.022 (2)0.0211 (19)0.0008 (17)0.0084 (17)0.0003 (17)
C100.028 (2)0.025 (2)0.025 (2)0.0053 (17)0.0041 (16)0.0003 (18)
C130.040 (3)0.031 (3)0.031 (2)0.013 (2)0.011 (2)0.014 (2)
C90.027 (2)0.032 (2)0.024 (2)0.0101 (19)0.0045 (16)0.0005 (19)
C40.024 (2)0.026 (2)0.023 (2)0.0019 (17)0.0037 (16)0.0023 (18)
C20.030 (2)0.018 (2)0.025 (2)0.0010 (16)0.0010 (17)0.0004 (17)
C50.023 (2)0.024 (2)0.0176 (18)0.0012 (15)0.0054 (15)0.0028 (16)
C120.048 (3)0.028 (3)0.023 (2)0.003 (2)0.0016 (19)0.0004 (19)
C30.031 (2)0.027 (2)0.041 (3)0.0028 (18)0.0038 (19)0.012 (2)
C80.024 (2)0.038 (3)0.0196 (19)0.0029 (18)0.0055 (15)0.0030 (19)
Geometric parameters (Å, º) top
S1—C111.770 (4)C10—C51.391 (6)
S1—C41.819 (4)C10—H100.9500
Cl1—C71.749 (4)C13—H13A0.9800
N3—C111.307 (5)C13—H13B0.9800
N3—C131.459 (5)C13—H13C0.9800
N3—H30.80 (5)C9—C81.385 (6)
O1—C11.210 (5)C9—H90.9500
C1—N11.367 (5)C4—C31.518 (6)
C1—C41.518 (6)C4—H41.0000
N1—C51.421 (5)C2—C31.516 (6)
N1—C21.464 (5)C2—H2A0.9900
N2—C111.309 (5)C2—H2B0.9900
N2—C121.456 (5)C12—H12A0.9800
N2—H20.81 (5)C12—H12B0.9800
C6—C71.377 (6)C12—H12C0.9800
C6—C51.394 (6)C3—H3A0.9900
C6—H60.9500C3—H3B0.9900
C7—C81.375 (6)C8—H80.9500
C10—C91.385 (6)
C11—S1—C498.74 (18)C10—C9—H9119.6
C11—N3—C13125.0 (4)C8—C9—H9119.6
C11—N3—H3122 (4)C3—C4—C1104.8 (3)
C13—N3—H3113 (4)C3—C4—S1111.9 (3)
O1—C1—N1126.8 (4)C1—C4—S1112.1 (3)
O1—C1—C4126.1 (4)C3—C4—H4109.3
N1—C1—C4107.0 (3)C1—C4—H4109.3
C1—N1—C5125.1 (3)S1—C4—H4109.3
C1—N1—C2113.0 (3)N1—C2—C3103.7 (3)
C5—N1—C2121.5 (3)N1—C2—H2A111.0
C11—N2—C12123.3 (4)C3—C2—H2A111.0
C11—N2—H2114 (4)N1—C2—H2B111.0
C12—N2—H2122 (4)C3—C2—H2B111.0
N3—C11—N2122.6 (4)H2A—C2—H2B109.0
N3—C11—S1119.9 (3)C10—C5—C6120.4 (4)
N2—C11—S1117.4 (3)C10—C5—N1118.9 (4)
C7—C6—C5117.7 (4)C6—C5—N1120.6 (4)
C7—C6—H6121.1N2—C12—H12A109.5
C5—C6—H6121.1N2—C12—H12B109.5
C8—C7—C6123.4 (4)H12A—C12—H12B109.5
C8—C7—Cl1118.1 (3)N2—C12—H12C109.5
C6—C7—Cl1118.5 (3)H12A—C12—H12C109.5
C9—C10—C5119.6 (4)H12B—C12—H12C109.5
C9—C10—H10120.2C2—C3—C4103.8 (3)
C5—C10—H10120.2C2—C3—H3A111.0
N3—C13—H13A109.5C4—C3—H3A111.0
N3—C13—H13B109.5C2—C3—H3B111.0
H13A—C13—H13B109.5C4—C3—H3B111.0
N3—C13—H13C109.5H3A—C3—H3B109.0
H13A—C13—H13C109.5C7—C8—C9117.9 (4)
H13B—C13—H13C109.5C7—C8—H8121.1
C10—C9—C8120.9 (4)C9—C8—H8121.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br1i0.80 (5)2.56 (5)3.314 (4)159 (5)
N2—H2···Br10.81 (5)2.51 (5)3.303 (4)170 (5)
C6—H6···O10.952.382.899 (5)114
C8—H8···Br1ii0.952.873.662 (5)142
C2—H2A···Cg1iii0.992.693.628 (4)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17ClN3OS+·Br
Mr378.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)14.9409 (9), 7.7050 (5), 13.9141 (15)
β (°) 100.758 (7)
V3)1573.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.41 × 0.40 × 0.22
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionGaussian integration
(Coppens, 1970)
Tmin, Tmax0.401, 0.658
No. of measured, independent and
observed [I > 2σ(I)] reflections
11628, 3455, 2671
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.114, 1.22
No. of reflections3455
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.82

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski and Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br1i0.80 (5)2.56 (5)3.314 (4)159 (5)
N2—H2···Br10.81 (5)2.51 (5)3.303 (4)170 (5)
C6—H6···O10.952.382.899 (5)114
C8—H8···Br1ii0.952.873.662 (5)142
C2—H2A···Cg1iii0.992.693.628 (4)159
Symmetry codes: (i) x, y1, z; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Ministry of Education, Youth and Sports of the Czech Republic for financial support of this work within the framework of research project MSM 0021627501.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationHanusek, J., Hejtmánková, L., Štěrba, V. & Sedlák, M. (2004). Org. Biomol. Chem. 2, 1756–1763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHanusek, J., Sedlák, M., Drabina, P. & Ružička, A. (2009). Acta Cryst. E65, o411–o412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSedlák, M., Hanusek, J., Hejtmánková, L. & Kašparová, P. (2003). Org. Biomol. Chem. 1, 1204–1209.  Web of Science PubMed Google Scholar
First citationSedlák, M., Hejtmánková, L., Hanusek, J. & Macháček, V. (2002). J. Heterocycl. Chem. 39, 1105–1107.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds