organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{2-[3-(1H-Benzimidazol-2-yl)quinolin-2-yl­­oxy]eth­­oxy}ethanol

aOrganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany, and bDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: hashmi@hashmi.de

(Received 16 December 2008; accepted 22 January 2009; online 28 January 2009)

In the title compound, C20H19N3O3, the inter­planar angle between the benzimidazole unit and the quinoline unit is 25.1 (2)°. Two different hydrogen bonds involving the hydr­oxy group and the imidazole unit are present. An intra­molecular N—H⋯O hydrogen bond links the hydr­oxy group of the side chain with the imidazole unit, forming a 12-membered ring, and an inter­molecular O—H⋯N hydrogen bond links the mol­ecules, forming chains in the crystallographic b direction.

Related literature

A closely related structure is reported in the previous paper, see: Rominger et al. (2009[Rominger, F., Malathi, M., Mohan, P. S., Ramamurthi Dondeti, T. & Hashmi, A. S. K. (2009). Acta Cryst. E65, o400.]). An analogous pyridine compound is essentially flat (Kim et al., 2005[Kim, H. N., Lee, H. K. & Lee, S. W. (2005). Bull. Korean Chem. Soc. 26, 892-898.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O3

  • Mr = 349.38

  • Monoclinic, P 21 /c

  • a = 11.9478 (2) Å

  • b = 13.1338 (1) Å

  • c = 12.4031 (2) Å

  • β = 118.744 (1)°

  • V = 1706.47 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 200 (2) K

  • 0.43 × 0.28 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.983

  • 16400 measured reflections

  • 3920 independent reflections

  • 2890 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.02

  • 3920 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯O37 0.92 (2) 2.04 (2) 2.797 (2) 138.3 (19)
O37—H37⋯N13i 0.94 (3) 1.83 (3) 2.765 (2) 175 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

A closely related structure is reported [in this issue?] by Rominger et al. (2009). An analogous pyridine compound is essentially flat (Kim et al., 2005).

Refinement top

For all hydrogen atoms bond to a carbon atom the positions were calculated according to geometrical criteria. During the refinement the hydrogen atoms were allowed to shift with the preceding carbon atoms. The isotropic displacement parameters were set as 1.2 times the equivalent isotropic displacement parameters of the preceding carbon atoms. The positions of two hydrogen atoms of the heteroatoms were refined isotropically.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008a); program(s) used to refine structure: SHELXTL ( Sheldrick, 2008a); molecular graphics: SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid representation of the title compound with the intramolecular hydrogen bond indicated as dashed line. Displacement ellipsoids were plotted at 50% probability level.
[Figure 2] Fig. 2. Ball and stick representation of the hydrogen bond connected chain along the b direction. Hydrogen atoms not involved in hydrogen bonds (dashed lines) have been omitted.
[Figure 3] Fig. 3. Enhanced figure of the title compound with displacement ellipsoids plotted at 50% probability level.
2-{2-[3-(1H-Benzimidazol-2-yl)quinolin-2-yloxy]ethoxy}ethanol top
Crystal data top
C20H19N3O3F(000) = 736
Mr = 349.38Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7839 reflections
a = 11.9478 (2) Åθ = 1.9–27.5°
b = 13.1338 (1) ŵ = 0.09 mm1
c = 12.4031 (2) ÅT = 200 K
β = 118.744 (1)°Polyhedron, colourless
V = 1706.47 (4) Å30.43 × 0.28 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3920 independent reflections
Radiation source: fine-focus sealed tube2890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1515
Tmin = 0.960, Tmax = 0.983k = 1617
16400 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.5312P]
where P = (Fo2 + 2Fc2)/3
3920 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H19N3O3V = 1706.47 (4) Å3
Mr = 349.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.9478 (2) ŵ = 0.09 mm1
b = 13.1338 (1) ÅT = 200 K
c = 12.4031 (2) Å0.43 × 0.28 × 0.18 mm
β = 118.744 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3920 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
2890 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.983Rint = 0.051
16400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.19 e Å3
3920 reflectionsΔρmin = 0.18 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.88443 (12)0.06208 (10)0.82383 (11)0.0329 (3)
C20.76960 (14)0.02903 (11)0.79014 (13)0.0292 (3)
C30.70017 (13)0.04708 (11)0.85560 (13)0.0280 (3)
C40.76217 (14)0.10173 (11)0.96231 (13)0.0296 (3)
H40.72030.11491.00940.036*
C50.88674 (14)0.13885 (11)1.00364 (13)0.0313 (3)
C60.95367 (16)0.19686 (13)1.11232 (15)0.0390 (4)
H60.91410.21291.16080.047*
C71.07435 (17)0.22987 (14)1.14778 (16)0.0453 (4)
H71.11920.26791.22160.054*
C81.13282 (17)0.20803 (14)1.07591 (17)0.0452 (4)
H81.21710.23151.10150.054*
C91.06998 (16)0.15334 (13)0.96934 (16)0.0401 (4)
H91.11050.13960.92120.048*
C100.94551 (14)0.11733 (11)0.93079 (14)0.0315 (3)
C120.56784 (13)0.01642 (11)0.81376 (13)0.0276 (3)
N130.49537 (12)0.06596 (9)0.85027 (11)0.0306 (3)
N140.50501 (12)0.06326 (9)0.73809 (11)0.0296 (3)
H140.5367 (18)0.1089 (15)0.7031 (17)0.053 (5)*
C210.37911 (14)0.01587 (11)0.79551 (13)0.0300 (3)
C220.26652 (15)0.03860 (13)0.79847 (15)0.0376 (4)
H220.26270.09360.84630.045*
C230.16163 (16)0.02100 (14)0.73012 (16)0.0427 (4)
H230.08370.00650.73020.051*
C240.16696 (16)0.10276 (14)0.66025 (17)0.0442 (4)
H240.09260.14270.61430.053*
C250.27764 (16)0.12678 (13)0.65644 (15)0.0395 (4)
H250.28130.18250.60930.047*
C260.38342 (14)0.06551 (11)0.72491 (13)0.0296 (3)
O310.70752 (10)0.02559 (8)0.68516 (9)0.0339 (3)
C320.77582 (16)0.04159 (13)0.61680 (14)0.0381 (4)
H32A0.85500.08080.66690.046*
H32B0.79930.02460.59510.046*
C330.68995 (17)0.09925 (12)0.50313 (14)0.0396 (4)
H33A0.60500.06620.46150.048*
H33B0.72580.09880.44590.048*
O340.67706 (11)0.20130 (8)0.53374 (10)0.0383 (3)
C350.56108 (17)0.24765 (13)0.44759 (15)0.0427 (4)
H35A0.57030.32250.45630.051*
H35B0.54360.22980.36340.051*
C360.44979 (17)0.21515 (14)0.46430 (17)0.0470 (4)
H36A0.43190.14220.44290.056*
H36B0.37320.25440.40740.056*
O370.47303 (13)0.23023 (9)0.58596 (12)0.0464 (3)
H370.486 (2)0.300 (2)0.604 (2)0.077 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0349 (7)0.0330 (7)0.0346 (7)0.0019 (5)0.0197 (6)0.0033 (5)
C20.0315 (8)0.0271 (7)0.0299 (7)0.0032 (6)0.0157 (6)0.0034 (6)
C30.0296 (8)0.0261 (7)0.0301 (7)0.0030 (6)0.0158 (6)0.0042 (6)
C40.0307 (8)0.0295 (8)0.0315 (7)0.0029 (6)0.0173 (6)0.0029 (6)
C50.0325 (8)0.0282 (8)0.0320 (8)0.0028 (6)0.0145 (6)0.0048 (6)
C60.0402 (9)0.0388 (9)0.0379 (9)0.0041 (7)0.0187 (7)0.0019 (7)
C70.0440 (10)0.0421 (10)0.0424 (9)0.0114 (8)0.0148 (8)0.0034 (8)
C80.0362 (9)0.0430 (10)0.0527 (11)0.0087 (8)0.0183 (8)0.0033 (8)
C90.0367 (9)0.0393 (9)0.0490 (10)0.0004 (7)0.0243 (8)0.0067 (8)
C100.0312 (8)0.0280 (8)0.0354 (8)0.0025 (6)0.0160 (7)0.0058 (6)
C120.0308 (8)0.0264 (7)0.0261 (7)0.0022 (6)0.0142 (6)0.0038 (6)
N130.0304 (7)0.0323 (7)0.0318 (6)0.0010 (5)0.0170 (5)0.0026 (5)
N140.0334 (7)0.0249 (6)0.0337 (7)0.0006 (5)0.0187 (6)0.0003 (5)
C210.0309 (8)0.0309 (8)0.0289 (7)0.0010 (6)0.0150 (6)0.0021 (6)
C220.0351 (9)0.0420 (9)0.0395 (8)0.0011 (7)0.0210 (7)0.0023 (7)
C230.0332 (9)0.0493 (10)0.0499 (10)0.0028 (8)0.0235 (8)0.0006 (8)
C240.0368 (9)0.0440 (10)0.0502 (10)0.0104 (8)0.0196 (8)0.0047 (8)
C250.0434 (9)0.0322 (8)0.0438 (9)0.0060 (7)0.0217 (8)0.0053 (7)
C260.0322 (8)0.0275 (7)0.0310 (7)0.0004 (6)0.0167 (6)0.0041 (6)
O310.0359 (6)0.0396 (6)0.0318 (5)0.0000 (5)0.0207 (5)0.0043 (5)
C320.0433 (9)0.0443 (9)0.0367 (8)0.0026 (7)0.0272 (7)0.0004 (7)
C330.0553 (10)0.0382 (9)0.0331 (8)0.0045 (8)0.0274 (8)0.0049 (7)
O340.0460 (7)0.0355 (6)0.0343 (6)0.0061 (5)0.0199 (5)0.0039 (5)
C350.0560 (11)0.0388 (9)0.0333 (8)0.0006 (8)0.0214 (8)0.0013 (7)
C360.0478 (10)0.0397 (10)0.0505 (11)0.0007 (8)0.0213 (9)0.0065 (8)
O370.0656 (8)0.0295 (6)0.0596 (8)0.0021 (6)0.0425 (7)0.0045 (6)
Geometric parameters (Å, º) top
N1—C21.3015 (19)C21—C261.398 (2)
N1—C101.374 (2)C22—C231.371 (2)
C2—O311.3532 (17)C22—H220.9500
C2—C31.432 (2)C23—C241.400 (3)
C3—C41.368 (2)C23—H230.9500
C3—C121.464 (2)C24—C251.382 (2)
C4—C51.408 (2)C24—H240.9500
C4—H40.9500C25—C261.391 (2)
C5—C101.414 (2)C25—H250.9500
C5—C61.414 (2)O31—C321.4472 (18)
C6—C71.360 (2)C32—C331.491 (2)
C6—H60.9500C32—H32A0.9900
C7—C81.401 (3)C32—H32B0.9900
C7—H70.9500C33—O341.4215 (19)
C8—C91.368 (2)C33—H33A0.9900
C8—H80.9500C33—H33B0.9900
C9—C101.407 (2)O34—C351.417 (2)
C9—H90.9500C35—C361.503 (3)
C12—N131.3248 (18)C35—H35A0.9900
C12—N141.3646 (19)C35—H35B0.9900
N13—C211.3843 (19)C36—O371.411 (2)
N14—C261.3818 (19)C36—H36A0.9900
N14—H140.92 (2)C36—H36B0.9900
C21—C221.396 (2)O37—H370.94 (3)
C2—N1—C10118.33 (13)C21—C22—H22121.1
N1—C2—O31119.41 (13)C22—C23—C24121.35 (16)
N1—C2—C3124.84 (14)C22—C23—H23119.3
O31—C2—C3115.75 (13)C24—C23—H23119.3
C4—C3—C2116.32 (13)C25—C24—C23121.67 (16)
C4—C3—C12118.51 (13)C25—C24—H24119.2
C2—C3—C12125.09 (13)C23—C24—H24119.2
C3—C4—C5121.31 (14)C24—C25—C26116.78 (15)
C3—C4—H4119.3C24—C25—H25121.6
C5—C4—H4119.3C26—C25—H25121.6
C4—C5—C10117.46 (14)N14—C26—C25132.82 (14)
C4—C5—C6123.21 (14)N14—C26—C21105.24 (13)
C10—C5—C6119.33 (14)C25—C26—C21121.90 (14)
C7—C6—C5120.36 (16)C2—O31—C32115.99 (12)
C7—C6—H6119.8O31—C32—C33107.60 (13)
C5—C6—H6119.8O31—C32—H32A110.2
C6—C7—C8120.28 (16)C33—C32—H32A110.2
C6—C7—H7119.9O31—C32—H32B110.2
C8—C7—H7119.9C33—C32—H32B110.2
C9—C8—C7120.81 (16)H32A—C32—H32B108.5
C9—C8—H8119.6O34—C33—C32109.88 (13)
C7—C8—H8119.6O34—C33—H33A109.7
C8—C9—C10120.26 (16)C32—C33—H33A109.7
C8—C9—H9119.9O34—C33—H33B109.7
C10—C9—H9119.9C32—C33—H33B109.7
N1—C10—C9119.30 (14)H33A—C33—H33B108.2
N1—C10—C5121.74 (13)C35—O34—C33113.32 (12)
C9—C10—C5118.95 (15)O34—C35—C36112.53 (14)
N13—C12—N14112.21 (13)O34—C35—H35A109.1
N13—C12—C3121.05 (13)C36—C35—H35A109.1
N14—C12—C3126.73 (13)O34—C35—H35B109.1
C12—N13—C21105.40 (12)C36—C35—H35B109.1
C12—N14—C26107.28 (12)H35A—C35—H35B107.8
C12—N14—H14127.4 (12)O37—C36—C35112.06 (15)
C26—N14—H14125.3 (12)O37—C36—H36A109.2
N13—C21—C22129.64 (14)C35—C36—H36A109.2
N13—C21—C26109.88 (13)O37—C36—H36B109.2
C22—C21—C26120.41 (14)C35—C36—H36B109.2
C23—C22—C21117.88 (15)H36A—C36—H36B107.9
C23—C22—H22121.1C36—O37—H37108.8 (14)
C10—N1—C2—O31179.98 (13)N14—C12—N13—C210.02 (16)
C10—N1—C2—C30.9 (2)C3—C12—N13—C21178.94 (12)
N1—C2—C3—C41.2 (2)N13—C12—N14—C260.11 (16)
O31—C2—C3—C4179.63 (13)C3—C12—N14—C26178.78 (13)
N1—C2—C3—C12175.39 (14)C12—N13—C21—C22176.95 (16)
O31—C2—C3—C123.7 (2)C12—N13—C21—C260.07 (16)
C2—C3—C4—C50.8 (2)N13—C21—C22—C23176.58 (15)
C12—C3—C4—C5176.08 (13)C26—C21—C22—C230.2 (2)
C3—C4—C5—C100.1 (2)C21—C22—C23—C240.6 (3)
C3—C4—C5—C6179.06 (14)C22—C23—C24—C250.3 (3)
C4—C5—C6—C7179.50 (15)C23—C24—C25—C260.3 (3)
C10—C5—C6—C71.3 (2)C12—N14—C26—C25177.47 (16)
C5—C6—C7—C81.0 (3)C12—N14—C26—C210.15 (15)
C6—C7—C8—C90.0 (3)C24—C25—C26—N14176.25 (16)
C7—C8—C9—C100.6 (3)C24—C25—C26—C210.7 (2)
C2—N1—C10—C9179.66 (14)N13—C21—C26—N140.14 (16)
C2—N1—C10—C50.2 (2)C22—C21—C26—N14177.20 (13)
C8—C9—C10—N1179.64 (15)N13—C21—C26—C25177.82 (14)
C8—C9—C10—C50.2 (2)C22—C21—C26—C250.5 (2)
C4—C5—C10—N10.2 (2)N1—C2—O31—C320.87 (19)
C6—C5—C10—N1179.44 (14)C3—C2—O31—C32178.30 (13)
C4—C5—C10—C9179.96 (14)C2—O31—C32—C33177.84 (12)
C6—C5—C10—C90.7 (2)O31—C32—C33—O3471.36 (16)
C4—C3—C12—N1322.5 (2)C32—C33—O34—C35153.87 (13)
C2—C3—C12—N13154.07 (14)C33—O34—C35—C3678.72 (17)
C4—C3—C12—N14156.31 (14)O34—C35—C36—O3753.58 (19)
C2—C3—C12—N1427.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O370.92 (2)2.04 (2)2.797 (2)138.3 (19)
O37—H37···N13i0.94 (3)1.83 (3)2.765 (2)175 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H19N3O3
Mr349.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)11.9478 (2), 13.1338 (1), 12.4031 (2)
β (°) 118.744 (1)
V3)1706.47 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.28 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.960, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
16400, 3920, 2890
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.02
No. of reflections3920
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008a), SHELXTL ( Sheldrick, 2008a).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···O370.92 (2)2.04 (2)2.797 (2)138.3 (19)
O37—H37···N13i0.94 (3)1.83 (3)2.765 (2)175 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

References

First citationKim, H. N., Lee, H. K. & Lee, S. W. (2005). Bull. Korean Chem. Soc. 26, 892–898.  CAS Google Scholar
First citationRominger, F., Malathi, M., Mohan, P. S., Ramamurthi Dondeti, T. & Hashmi, A. S. K. (2009). Acta Cryst. E65, o400.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds