organic compounds
N,N′-Bis[(E)-quinoxalin-2-ylmethylidene]ethane-1,2-diamine
aDepartment of Applied Chemistry, Cochin University of Science and Technology, Cochin 682 022, Kerala, India
*Correspondence e-mail: yusuff@cusat.ac.in
In the molecule of the title compound, C20H16N6, the central C—C bond lies on a crystallographic inversion centre. The quinoxalidine ring is nearly planar, with a maximum deviation of 0.021 (2) Å from the mean plane. The is stabilized by intermolecular C—H⋯N interactions, leading to the formation of a layer-like structure, which extends along the a axis.
Related literature
For the synthesis of the Schiff base, see: Zolezzi et al. (1999). For the properties of Schiff base ligands, see: Gupta & Sutar (2008); Harmenberg et al. (1991); Mayadevi et al. (2003); Miller et al. (1999); Naylor et al. (1993); Sreekala & Yusuff (1994); Xavier et al. (2004); Yusuff & Sreekala (1991). For related structures, see: Habibi et al. (2006); Taylor & Kennard (1982).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and/or ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536809003006/fj2185sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003006/fj2185Isup2.hkl
A hot solution of ethylenediamine (1 mmol) in methanol (25 ml) was slowly added over a hot solution of quinoxaline-2-carboxaldehyde (2 mmol) in the same solvent (50 ml). The resulting mixture on cooling yielded the crude product. The precipitated diimine was filtered off and washed with cold methanol. Light yellow single crystals of (1) were obtained from a solution of dichloromethane by slow evaporation.
H atoms were positioned geometrically with, C—H = 0.93 A° and refined in riding mode with Uiso (H) = 1.2Ueq(C).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).C20H16N6 | Z = 1 |
Mr = 340.39 | F(000) = 178 |
Triclinic, P1 | Dx = 1.345 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.888 (2) Å | Cell parameters from 1465 reflections |
b = 7.381 (3) Å | θ = 2.3–25.0° |
c = 9.638 (4) Å | µ = 0.09 mm−1 |
α = 101.674 (6)° | T = 298 K |
β = 96.233 (6)° | Plate, yellow |
γ = 116.046 (5)° | 0.40 × 0.24 × 0.18 mm |
V = 420.1 (3) Å3 |
Bruker SMART CCD area-detector diffractometer | 1465 independent reflections |
Radiation source: fine-focus sealed tube | 1239 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | h = −8→8 |
Tmin = 0.967, Tmax = 0.995 | k = −8→8 |
3956 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.071 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.27 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.1572P] where P = (Fo2 + 2Fc2)/3 |
1465 reflections | (Δ/σ)max < 0.001 |
118 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C20H16N6 | γ = 116.046 (5)° |
Mr = 340.39 | V = 420.1 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.888 (2) Å | Mo Kα radiation |
b = 7.381 (3) Å | µ = 0.09 mm−1 |
c = 9.638 (4) Å | T = 298 K |
α = 101.674 (6)° | 0.40 × 0.24 × 0.18 mm |
β = 96.233 (6)° |
Bruker SMART CCD area-detector diffractometer | 1465 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) | 1239 reflections with I > 2σ(I) |
Tmin = 0.967, Tmax = 0.995 | Rint = 0.025 |
3956 measured reflections |
R[F2 > 2σ(F2)] = 0.071 | 0 restraints |
wR(F2) = 0.164 | H-atom parameters constrained |
S = 1.27 | Δρmax = 0.13 e Å−3 |
1465 reflections | Δρmin = −0.21 e Å−3 |
118 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.4604 (3) | 0.2446 (3) | 0.5782 (2) | 0.0439 (6) | |
N2 | 0.0673 (3) | 0.2571 (3) | 0.4735 (2) | 0.0405 (6) | |
N3 | 0.0679 (3) | 0.3587 (3) | 0.8476 (2) | 0.0425 (6) | |
C1 | 0.5203 (4) | 0.1943 (4) | 0.3355 (3) | 0.0482 (7) | |
H1 | 0.6488 | 0.1881 | 0.3682 | 0.058* | |
C2 | 0.4561 (5) | 0.1772 (4) | 0.1921 (3) | 0.0518 (8) | |
H2 | 0.5425 | 0.1608 | 0.1280 | 0.062* | |
C3 | 0.2624 (5) | 0.1841 (4) | 0.1406 (3) | 0.0522 (8) | |
H3 | 0.2216 | 0.1735 | 0.0429 | 0.063* | |
C4 | 0.1338 (4) | 0.2062 (4) | 0.2329 (3) | 0.0473 (7) | |
H4 | 0.0032 | 0.2070 | 0.1975 | 0.057* | |
C5 | 0.1963 (4) | 0.2279 (4) | 0.3820 (3) | 0.0374 (6) | |
C6 | 0.3918 (4) | 0.2210 (4) | 0.4334 (3) | 0.0381 (6) | |
C7 | 0.3349 (4) | 0.2733 (4) | 0.6617 (3) | 0.0429 (7) | |
H7 | 0.3764 | 0.2897 | 0.7604 | 0.051* | |
C8 | 0.1382 (4) | 0.2813 (4) | 0.6116 (3) | 0.0371 (6) | |
C9 | 0.0064 (4) | 0.3217 (4) | 0.7124 (3) | 0.0419 (6) | |
H9 | −0.1251 | 0.3198 | 0.6754 | 0.050* | |
C10 | −0.0707 (4) | 0.3998 (4) | 0.9395 (3) | 0.0438 (7) | |
H10A | −0.1415 | 0.2835 | 0.9804 | 0.053* | |
H10B | −0.1857 | 0.4133 | 0.8820 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0419 (12) | 0.0551 (14) | 0.0405 (12) | 0.0272 (11) | 0.0095 (10) | 0.0150 (10) |
N2 | 0.0409 (12) | 0.0465 (13) | 0.0350 (12) | 0.0231 (11) | 0.0064 (9) | 0.0084 (10) |
N3 | 0.0463 (13) | 0.0504 (13) | 0.0342 (12) | 0.0257 (11) | 0.0108 (9) | 0.0113 (10) |
C1 | 0.0440 (15) | 0.0514 (17) | 0.0495 (16) | 0.0233 (14) | 0.0136 (13) | 0.0113 (13) |
C2 | 0.0565 (18) | 0.0512 (17) | 0.0433 (16) | 0.0210 (14) | 0.0221 (13) | 0.0093 (13) |
C3 | 0.0596 (18) | 0.0568 (18) | 0.0332 (14) | 0.0228 (15) | 0.0095 (13) | 0.0101 (13) |
C4 | 0.0497 (16) | 0.0554 (18) | 0.0345 (14) | 0.0243 (14) | 0.0039 (12) | 0.0122 (12) |
C5 | 0.0375 (14) | 0.0327 (13) | 0.0385 (14) | 0.0138 (11) | 0.0077 (11) | 0.0098 (11) |
C6 | 0.0380 (13) | 0.0377 (14) | 0.0372 (13) | 0.0173 (12) | 0.0074 (11) | 0.0096 (11) |
C7 | 0.0448 (15) | 0.0524 (16) | 0.0313 (13) | 0.0233 (13) | 0.0052 (11) | 0.0127 (12) |
C8 | 0.0368 (13) | 0.0367 (14) | 0.0357 (14) | 0.0173 (11) | 0.0061 (11) | 0.0071 (11) |
C9 | 0.0414 (15) | 0.0457 (16) | 0.0406 (15) | 0.0229 (13) | 0.0076 (12) | 0.0113 (12) |
C10 | 0.0443 (15) | 0.0528 (17) | 0.0368 (14) | 0.0235 (13) | 0.0139 (11) | 0.0139 (12) |
N1—C7 | 1.298 (3) | C3—H3 | 0.9300 |
N1—C6 | 1.373 (3) | C4—C5 | 1.410 (3) |
N2—C8 | 1.315 (3) | C4—H4 | 0.9300 |
N2—C5 | 1.369 (3) | C5—C6 | 1.409 (3) |
N3—C9 | 1.260 (3) | C7—C8 | 1.418 (3) |
N3—C10 | 1.455 (3) | C7—H7 | 0.9300 |
C1—C2 | 1.367 (4) | C8—C9 | 1.472 (3) |
C1—C6 | 1.404 (3) | C9—H9 | 0.9300 |
C1—H1 | 0.9300 | C10—C10i | 1.512 (5) |
C2—C3 | 1.398 (4) | C10—H10A | 0.9700 |
C2—H2 | 0.9300 | C10—H10B | 0.9700 |
C3—C4 | 1.357 (4) | ||
C7—N1—C6 | 115.8 (2) | N1—C6—C1 | 119.7 (2) |
C8—N2—C5 | 116.2 (2) | N1—C6—C5 | 120.9 (2) |
C9—N3—C10 | 117.9 (2) | C1—C6—C5 | 119.4 (2) |
C2—C1—C6 | 119.9 (3) | N1—C7—C8 | 124.0 (2) |
C2—C1—H1 | 120.1 | N1—C7—H7 | 118.0 |
C6—C1—H1 | 120.1 | C8—C7—H7 | 118.0 |
C1—C2—C3 | 121.0 (3) | N2—C8—C7 | 121.6 (2) |
C1—C2—H2 | 119.5 | N2—C8—C9 | 116.9 (2) |
C3—C2—H2 | 119.5 | C7—C8—C9 | 121.5 (2) |
C4—C3—C2 | 120.1 (3) | N3—C9—C8 | 121.5 (2) |
C4—C3—H3 | 120.0 | N3—C9—H9 | 119.3 |
C2—C3—H3 | 120.0 | C8—C9—H9 | 119.3 |
C3—C4—C5 | 120.7 (3) | N3—C10—C10 | 109.5 (3) |
C3—C4—H4 | 119.7 | N3—C10—H10A | 109.8 |
C5—C4—H4 | 119.7 | C10—C10—H10A | 109.8 |
N2—C5—C6 | 121.6 (2) | N3—C10—H10B | 109.8 |
N2—C5—C4 | 119.4 (2) | C10—C10—H10B | 109.8 |
C6—C5—C4 | 119.0 (2) | H10A—C10—H10B | 108.2 |
Symmetry code: (i) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N2ii | 0.93 | 2.73 | 3.647 (4) | 168 |
C9—H9···N1iii | 0.93 | 2.67 | 3.593 (3) | 169 |
Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C20H16N6 |
Mr | 340.39 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 6.888 (2), 7.381 (3), 9.638 (4) |
α, β, γ (°) | 101.674 (6), 96.233 (6), 116.046 (5) |
V (Å3) | 420.1 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.40 × 0.24 × 0.18 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2001) |
Tmin, Tmax | 0.967, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3956, 1465, 1239 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.071, 0.164, 1.27 |
No. of reflections | 1465 |
No. of parameters | 118 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.13, −0.21 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXTL (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···N2i | 0.93 | 2.73 | 3.647 (4) | 168 |
C9—H9···N1ii | 0.93 | 2.67 | 3.593 (3) | 169 |
Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z. |
Acknowledgements
The authors thank Professor M. V. Rajasekharan, School of Chemistry, University of Hyderabad, for kind help and useful discussions. The X-ray data were collected on the diffractometer facilities at the University of Hyderabad provided by the Department of Science and Technology. DV gratefully acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), India. MS thanks KSCSTE, Trivandrum, Kerala, for financial assistance.
References
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450. Web of Science CrossRef CAS Google Scholar
Habibi, M. H., Montazerozohori, M., Lalegani, A., Harrington, R. W. & Clegg, W. (2006). J. Fluorine Chem. 127, 769–773. Web of Science CSD CrossRef CAS Google Scholar
Harmenberg, J., Akesson-Johansson, A., Graslund, A., Malmfors, T., Bergman, J., Wahren, B., Akerfeldt, S., Lundblad, L. & Cox, S. (1991). Antiviral Res. 15, 193–204. CrossRef PubMed CAS Web of Science Google Scholar
Mayadevi, S., Prasad, P. G. & Yusuff, K. K. M. (2003). Synth. React. Inorg. Met. Org. Chem. 33, 481–496. Web of Science CrossRef CAS Google Scholar
Miller, J. K., Baag, J. H. & Abu-Omar, M. M. (1999). Inorg. Chem. 38, 4510–4514. Web of Science CSD CrossRef PubMed CAS Google Scholar
Naylor, M. A., Stephen, M. A., Nolan, J., Sutton, B., Tocher, J. H., Fielden, E. M., Adams, G. E. & Strafford, I. J. (1993). Anticancer Drug. Des. 8, 439–461. CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreekala, R. & Yusuff, K. K. M. (1994). Synth. React. Inorg. Met. Org. Chem. 24, 1773–1788. CrossRef CAS Web of Science Google Scholar
Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063–5070. CrossRef CAS Web of Science Google Scholar
Xavier, K. O., Chacko, J. & Yusuff, K. K. M. (2004). Appl. Catal. A Gen. 258, 251–259. Web of Science CrossRef CAS Google Scholar
Yusuff, K. K. M. & Sreekala, R. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 553–568. CrossRef CAS Web of Science Google Scholar
Zolezzi, S., Decinti, A. & Spodine, E. (1999). Polyhedron, 18, 897–904. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases derived from aldehydes and diamines constitute one of the most relevant synthetic ligand systems. They find application in a broad range of transition metal catalyzed reactions including lactide polymerization, epoxidation of olefins, hydroxylation and asymmetric ring opening of epoxides (Gupta & Sutar, 2008). Many drug candidates bearing quinoxaline core structures are in clinical trials in antiviral (Harmenberg et al., 1991), anticancer and central nervous system therapeutic areas (Naylor et al., 1993). Catalytic and antibacterial activities have been observed for the Schiff base complexes derived from Quinoxaline-2-carboxaldehyde (Yusuff & Sreekala, 1991; Sreekala & Yusuff, 1994; Mayadevi et al., 2003). Ethylenediamine groups appear to be of importance for various transition metal catalysis (Miller et al., 1999; Xavier et al., 2004). We have recently prepared the title compound (1), and report here its structure.
The single-crystal X-ray structure determination of (1) was carried out at 298 (2) K. The structure analysis showed that the compound to form in triclinic space group P-1 with a =6.888 (2) A°, b=7.381 (3) A°, c=9.638 (4) A° and α = 101.674 (6)°, β = 96.233 (6)°, γ = 116.046 (5)° with z=1. A perspective drawing is depicted in figure 1 with the atomic numbering scheme. The C10—N3—C9, N3—C9—C8 angles are 117.9 (2)° and 121.5 (2)° respectively. The N3—C10 and N3—C9 bond lengths are 1.455 (3) A° and 1.260 (3) A° respectively. In this compound (1), the short (C–)H···N contacts are responsible for the stability of layer structure (figure 3) which extends along the a axis (Taylor & Kennard, 1982). The (C–)H···N distances and C—H—N angles are given in table 1.