organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′,3′,3′-Tri­methyl-2,3-di­phenyl-2,3-di­hydro­isoxazole-5(4H)-spiro-2′-indoline

aLaboratoire des Substances Naturelles & Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR–CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Physico-Chimie des Matèriaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: mohamedazrour@yahoo.fr

(Received 30 December 2008; accepted 15 January 2009; online 23 January 2009)

Two diastereoisomers of the title compound, C25H26N2O, have been prepared by cyclo­addition between 1,3,3-trimethyl-2-methyl­eneindoline and C-phenyl-N-phenyl­nitrone. The stereochemistry of the major diastereoisomer, viz. S,R/R,S, is confirmed by the X-ray analysis. The oxazole and the pyrole rings have envelope conformations. The packing is stabilized by weak C—H⋯π inter­actions involving the phenyl ring attached to the N atom of the oxazole and the phenyl ring of the indole fragment.

Related literature

For general background, see: Alonso-Perarnau et al. (1997[Alonso-Perarnau, D., De March, P., El Arrad, M., Figueredo, M., Font, J. & Parella, T. (1997). Tetrahedron, 53, 14763-14772.]); Cacciarini et al. (2000[Cacciarini, M., Cordero, M., Faggi, C. & Goti, A. (2000). Molecules, 5, 637-647.]); Pariera et al. (1993[Pariera, S. M., Savage, J. P., Simpson, G. W., Greenword, R. J. & Mackay, M. F. (1993). Tetrahedron, 6, 1401-1412.]). For related studies, see: Daran et al. (2006[Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329-o331.]); Fihi et al. (1995[Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 1, 55-62.], 2004[Fihi, R., Majidi, L. & Zair, T. (2004). J. Mar. Chim. Heterocycl. 3, 52-56.]); Roussel et al. (2000[Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471-476.], 2003[Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689-2698.]). For the synthetic procedure, see: Brüning et al. (1973[Brüning, I., Grashey, R., Hauck, H., Huisgen, R. & Seidel, H. (1973). Org. Synth. Coll. V, pp. 1124-1129.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C25H26N2O

  • Mr = 370.48

  • Orthorhombic, P n a 21

  • a = 18.0393 (18) Å

  • b = 8.9854 (7) Å

  • c = 12.3947 (9) Å

  • V = 2009.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 180 (2) K

  • 0.48 × 0.36 × 0.28 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: none

  • 19030 measured reflections

  • 2021 independent reflections

  • 1581 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.105

  • S = 1.15

  • 2021 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1is the centroid of the C21–C26 ring and Cg2 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cg1i 0.95 2.89 3.735 (3) 149
C23—H23⋯Cg2ii 0.95 2.95 3.803 (4) 150
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, -y+2, z-{\script{1\over 2}}].

Data collection: IPDS (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Manual. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS; data reduction: X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic spirocompounds are of interest in synthetic organic chemistry (Pariera et al., 1993; Alonso-Perarnau et al., 1997; Cacciarini et al., 2000). The cycloaddition between dipolarophiles bearing an exocyclic carbon-carbon double bond and appropriate1,3-dipoles is one of the best methods for the synthesis of bicyclic spirocompounds.

As part of our research on bicyclic spirocompounds (Fihi et al., 1995; Roussel et al., 2000, 2003; Daran et al., 2006), we reported that methylene lactones react with 1,3-dipoles with high selectivity. In a previous article (Fihi et al., 2004) we reported that 1,3-dipolar cycloaddition of arylnitriloxydes and N-Phenylarylnitrilimines to 5-chloro-2-methylene-1,3,3-trimethylindoline is regiospecific. Arylnitriloxydes reactions lead to spiroheterocyclic compounds, whereas N-phenylarylnitrilimines reactions afforded evolutives products.

We report here, the cycloaddition of C-phenyl-N-phenylnitrone (2) to 2-methylene-1,3,3-trimethylindoline (1). The reaction produced a mixture of diastereoisomers (Fig. 2). The ratio (77 / 23%) of which was evaluated by 1HNMR (performed on the crude reaction mixture). To confirm unambiguously the structure assignment of (3) and (3'), and to establish the stereochemistry of each spiroheterocycle, an X-ray structural analyses was carried out on the major spirocompound, because the 1H and 13CNMR studies did not provide unambiguous information.

The stereochemistry of the major diastereoisomer, S,R/R,S, is confirmed by the X-ray analyses (Fig. 1). The oxazole and the pyrole rings have an envelope conformation with puckering parameters Q(2)= 0.399 (3)°, ϕ(2)= 218.9 (5)° and Q(2)= 0.274 (3)°, ϕ(2)= 218.9 (7)° (Cremer & Pople, 1975). The packing is stabilized by weak C—H···π interactions involving the phenyl attached to the nitrogen of the oxazole and the phenyl of the indole fragment (Table 1: Cg1is the centroid of the C21—C26 ring and Cg2 is the centroid of the C3—C8 ring).

Related literature top

For general background, see: Alonso-Perarnau et al. (1997); Cacciarini et al. (2000); Pariera et al. (1993). For related studies, see: Daran et al. (2006); Fihi et al. (1995, 2004); Roussel et al. (2000, 2003). For the synthetic procedure, see: Brüning et al. (1973). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

2-Methylene-1,3,3-trimethylindoline (1) is a commercial product. C-phenyl, N-diphenylnitrone (2) was synthesized according to the literature procedure (Brüning et al., 1973). A solution of (2) (1 g, 6 mmol), (1) (1,12 g, 6 mmol) in ethylacetate (40 ml) was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was crystallized from ethanol, leading to a mixture of diastereiosomers (3) and (3'). They were separated and purified by chromatography on silica gel (eluant: dichloromethane / hexane: 10 / 90). The spirocompounds were finally recrystallized from dichloromethane.

Refinement top

All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl), 0.99 Å (methylene), 1.0 Å (methine) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic, methylene and methine) or Uiso(H) = 1.5Ueq(methyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: IPDS (Stoe, 2000); cell refinement: IPDS (Stoe, 2000); data reduction: X-RED (Stoe, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The formation of the title compound.
1',3',3'-Trimethyl-2,3-diphenyl-2,3-dihydroisoxazole-5(4H)-spiro- 2'-indoline top
Crystal data top
C25H26N2OF(000) = 792
Mr = 370.48Dx = 1.225 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 8000 reflections
a = 18.0393 (18) Åθ = 1.7–26.2°
b = 8.9854 (7) ŵ = 0.08 mm1
c = 12.3947 (9) ÅT = 180 K
V = 2009.1 (3) Å3Prism, colorless
Z = 40.48 × 0.36 × 0.28 mm
Data collection top
Stoe IPDS
diffractometer
1581 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ϕ scansh = 2222
19030 measured reflectionsk = 1111
2021 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.061P)2]
where P = (Fo2 + 2Fc2)/3
2021 reflections(Δ/σ)max = 0.007
256 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C25H26N2OV = 2009.1 (3) Å3
Mr = 370.48Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.0393 (18) ŵ = 0.08 mm1
b = 8.9854 (7) ÅT = 180 K
c = 12.3947 (9) Å0.48 × 0.36 × 0.28 mm
Data collection top
Stoe IPDS
diffractometer
1581 reflections with I > 2σ(I)
19030 measured reflectionsRint = 0.059
2021 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0421 restraint
wR(F2) = 0.105H-atom parameters constrained
S = 1.15Δρmax = 0.26 e Å3
2021 reflectionsΔρmin = 0.15 e Å3
256 parameters
Special details top

Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 167 frames (4 min per frame) were obtained with 0 < ϕ < 250.5° and with the crystals rotated through 1.5° in ϕ. Coverage of the unique set was over 97.4% complete to at least 26.04°. Crystal decay was monitored by measuring 200 reflections per frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43438 (17)0.9280 (3)0.0510 (3)0.0360 (7)
C20.52004 (18)0.9356 (3)0.0701 (3)0.0398 (7)
C30.53941 (16)1.0776 (3)0.0091 (3)0.0346 (7)
C40.60643 (18)1.1346 (4)0.0231 (3)0.0470 (8)
H40.65081.08020.01110.056*
C50.6086 (2)1.2734 (4)0.0738 (3)0.0523 (9)
H50.65471.31410.09640.063*
C60.5439 (2)1.3510 (4)0.0909 (3)0.0482 (9)
H60.54601.44520.12560.058*
C70.47568 (18)1.2952 (3)0.0588 (3)0.0412 (7)
H70.43121.34930.07100.049*
C80.47495 (15)1.1576 (3)0.0082 (3)0.0327 (7)
C90.34450 (16)0.7260 (3)0.0744 (3)0.0363 (7)
H90.29550.76560.05000.044*
C100.38766 (19)0.8462 (4)0.1354 (3)0.0458 (8)
H10A0.35310.91610.17130.055*
H10B0.41990.80060.19080.055*
C210.36716 (14)0.6294 (3)0.1120 (2)0.0294 (6)
C220.40480 (18)0.6491 (3)0.2083 (3)0.0367 (7)
H220.44530.71640.21170.044*
C230.38362 (18)0.5708 (3)0.2998 (3)0.0429 (7)
H230.40910.58560.36600.051*
C240.32514 (17)0.4710 (4)0.2943 (3)0.0438 (8)
H240.31100.41630.35650.053*
C250.28787 (18)0.4513 (4)0.1993 (3)0.0414 (8)
H250.24820.38210.19590.050*
C260.30746 (15)0.5317 (3)0.1074 (3)0.0352 (7)
H260.28030.51990.04230.042*
C910.33383 (16)0.5862 (3)0.1405 (3)0.0359 (7)
C920.39087 (17)0.4871 (3)0.1574 (3)0.0418 (8)
H920.43800.50560.12590.050*
C930.3806 (2)0.3610 (4)0.2195 (3)0.0511 (9)
H930.42050.29360.23020.061*
C940.3131 (2)0.3330 (4)0.2658 (3)0.0537 (9)
H940.30640.24600.30820.064*
C950.2549 (2)0.4299 (4)0.2513 (3)0.0532 (9)
H950.20830.41090.28410.064*
C960.26512 (18)0.5563 (4)0.1878 (3)0.0462 (8)
H960.22490.62290.17670.055*
C1110.33893 (17)1.1202 (4)0.0002 (4)0.0526 (9)
H11A0.32901.22480.01750.079*
H11B0.30321.05670.03800.079*
H11C0.33421.10510.07780.079*
C2110.5371 (2)0.9600 (4)0.1901 (3)0.0531 (9)
H21A0.58940.98710.19860.080*
H21B0.52700.86820.23010.080*
H21C0.50581.04030.21810.080*
C2120.5604 (2)0.7992 (4)0.0285 (4)0.0576 (11)
H21D0.54840.78450.04790.086*
H21E0.54480.71170.06980.086*
H21F0.61390.81340.03660.086*
N10.41386 (13)1.0819 (2)0.0341 (2)0.0369 (6)
N20.39329 (13)0.7023 (2)0.0180 (2)0.0323 (6)
O10.41789 (11)0.8501 (2)0.04964 (17)0.0370 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0486 (17)0.0268 (14)0.0327 (18)0.0061 (13)0.0006 (14)0.0026 (13)
C20.0508 (18)0.0289 (15)0.040 (2)0.0018 (13)0.0082 (15)0.0004 (13)
C30.0405 (16)0.0306 (15)0.0327 (19)0.0027 (12)0.0001 (13)0.0003 (12)
C40.0412 (17)0.0488 (19)0.051 (2)0.0023 (14)0.0057 (15)0.0044 (17)
C50.061 (2)0.052 (2)0.045 (2)0.0220 (17)0.0183 (17)0.0051 (16)
C60.075 (2)0.0369 (18)0.033 (2)0.0124 (16)0.0080 (16)0.0010 (14)
C70.0545 (18)0.0294 (16)0.040 (2)0.0016 (13)0.0020 (15)0.0007 (14)
C80.0393 (15)0.0278 (15)0.0308 (17)0.0033 (11)0.0016 (13)0.0016 (12)
C90.0392 (16)0.0353 (15)0.0344 (19)0.0024 (13)0.0062 (13)0.0029 (12)
C100.0589 (19)0.0389 (17)0.040 (2)0.0125 (14)0.0075 (16)0.0062 (15)
C210.0326 (14)0.0234 (13)0.0322 (18)0.0021 (11)0.0030 (12)0.0014 (12)
C220.0439 (16)0.0333 (15)0.0328 (19)0.0024 (12)0.0017 (13)0.0000 (13)
C230.0537 (18)0.0432 (17)0.0318 (18)0.0047 (14)0.0002 (15)0.0054 (15)
C240.0491 (18)0.0433 (17)0.039 (2)0.0008 (13)0.0094 (16)0.0094 (15)
C250.0419 (16)0.0399 (16)0.042 (2)0.0044 (13)0.0055 (15)0.0063 (15)
C260.0323 (14)0.0364 (15)0.0369 (18)0.0013 (12)0.0045 (13)0.0005 (14)
C910.0445 (16)0.0323 (15)0.0307 (17)0.0099 (13)0.0010 (14)0.0021 (13)
C920.0427 (16)0.0409 (17)0.042 (2)0.0040 (13)0.0009 (14)0.0015 (15)
C930.061 (2)0.0437 (19)0.048 (2)0.0014 (15)0.0055 (17)0.0017 (16)
C940.066 (2)0.0429 (19)0.052 (2)0.0193 (17)0.0025 (18)0.0060 (17)
C950.054 (2)0.058 (2)0.047 (2)0.0182 (18)0.0122 (17)0.0016 (18)
C960.0472 (17)0.0453 (18)0.046 (2)0.0044 (14)0.0023 (16)0.0026 (16)
C1110.0396 (17)0.0475 (18)0.071 (3)0.0017 (14)0.0049 (18)0.0098 (18)
C2110.066 (2)0.0489 (19)0.045 (2)0.0085 (16)0.0146 (18)0.0061 (17)
C2120.055 (2)0.0375 (18)0.081 (3)0.0098 (16)0.0048 (19)0.0012 (18)
N10.0374 (13)0.0269 (12)0.0464 (17)0.0029 (11)0.0025 (11)0.0012 (12)
N20.0410 (13)0.0248 (12)0.0311 (15)0.0095 (10)0.0016 (10)0.0016 (11)
O10.0570 (13)0.0239 (10)0.0302 (12)0.0113 (8)0.0029 (10)0.0018 (9)
Geometric parameters (Å, º) top
C1—N11.446 (4)C23—C241.386 (5)
C1—O11.461 (4)C23—H230.9500
C1—C101.531 (5)C24—C251.367 (5)
C1—C21.565 (4)C24—H240.9500
C2—C2121.516 (5)C25—C261.395 (4)
C2—C31.523 (4)C25—H250.9500
C2—C2111.534 (5)C26—H260.9500
C3—C41.372 (4)C91—C921.377 (4)
C3—C81.384 (4)C91—C961.397 (4)
C4—C51.397 (5)C92—C931.382 (5)
C4—H40.9500C92—H920.9500
C5—C61.376 (5)C93—C941.369 (6)
C5—H50.9500C93—H930.9500
C6—C71.388 (5)C94—C951.375 (6)
C6—H60.9500C94—H940.9500
C7—C81.387 (4)C95—C961.393 (5)
C7—H70.9500C95—H950.9500
C8—N11.397 (4)C96—H960.9500
C9—N21.460 (4)C111—N11.457 (4)
C9—C911.512 (4)C111—H11A0.9800
C9—C101.531 (4)C111—H11B0.9800
C9—H91.0000C111—H11C0.9800
C10—H10A0.9900C211—H21A0.9800
C10—H10B0.9900C211—H21B0.9800
C21—C221.384 (4)C211—H21C0.9800
C21—C261.390 (4)C212—H21D0.9800
C21—N21.417 (4)C212—H21E0.9800
C22—C231.388 (5)C212—H21F0.9800
C22—H220.9500N2—O11.454 (3)
N1—C1—O1106.4 (2)C25—C24—H24120.0
N1—C1—C10114.6 (3)C23—C24—H24120.0
O1—C1—C10104.0 (2)C24—C25—C26120.8 (3)
N1—C1—C2103.5 (2)C24—C25—H25119.6
O1—C1—C2110.6 (2)C26—C25—H25119.6
C10—C1—C2117.4 (3)C21—C26—C25119.3 (3)
C212—C2—C3113.4 (3)C21—C26—H26120.3
C212—C2—C211110.5 (3)C25—C26—H26120.3
C3—C2—C211108.4 (3)C92—C91—C96118.4 (3)
C212—C2—C1112.8 (3)C92—C91—C9121.6 (3)
C3—C2—C1100.8 (2)C96—C91—C9120.0 (3)
C211—C2—C1110.6 (3)C91—C92—C93120.9 (3)
C4—C3—C8120.1 (3)C91—C92—H92119.5
C4—C3—C2131.2 (3)C93—C92—H92119.5
C8—C3—C2108.6 (3)C94—C93—C92120.2 (3)
C3—C4—C5119.3 (3)C94—C93—H93119.9
C3—C4—H4120.4C92—C93—H93119.9
C5—C4—H4120.4C93—C94—C95120.5 (3)
C6—C5—C4119.9 (3)C93—C94—H94119.8
C6—C5—H5120.1C95—C94—H94119.8
C4—C5—H5120.1C94—C95—C96119.3 (3)
C5—C6—C7121.7 (3)C94—C95—H95120.3
C5—C6—H6119.2C96—C95—H95120.3
C7—C6—H6119.2C95—C96—C91120.7 (3)
C8—C7—C6117.4 (3)C95—C96—H96119.7
C8—C7—H7121.3C91—C96—H96119.7
C6—C7—H7121.3N1—C111—H11A109.5
C3—C8—C7121.7 (3)N1—C111—H11B109.5
C3—C8—N1110.6 (3)H11A—C111—H11B109.5
C7—C8—N1127.7 (3)N1—C111—H11C109.5
N2—C9—C91112.4 (2)H11A—C111—H11C109.5
N2—C9—C10100.6 (2)H11B—C111—H11C109.5
C91—C9—C10112.6 (3)C2—C211—H21A109.5
N2—C9—H9110.3C2—C211—H21B109.5
C91—C9—H9110.3H21A—C211—H21B109.5
C10—C9—H9110.3C2—C211—H21C109.5
C1—C10—C9106.4 (3)H21A—C211—H21C109.5
C1—C10—H10A110.5H21B—C211—H21C109.5
C9—C10—H10A110.5C2—C212—H21D109.5
C1—C10—H10B110.5C2—C212—H21E109.5
C9—C10—H10B110.5H21D—C212—H21E109.5
H10A—C10—H10B108.6C2—C212—H21F109.5
C22—C21—C26119.7 (3)H21D—C212—H21F109.5
C22—C21—N2119.1 (2)H21E—C212—H21F109.5
C26—C21—N2121.0 (3)C8—N1—C1108.5 (2)
C21—C22—C23120.3 (3)C8—N1—C111120.6 (3)
C21—C22—H22119.8C1—N1—C111120.4 (2)
C23—C22—H22119.8C21—N2—O1107.6 (2)
C24—C23—C22119.8 (3)C21—N2—C9120.8 (2)
C24—C23—H23120.1O1—N2—C9105.2 (2)
C22—C23—H23120.1N2—O1—C1105.6 (2)
C25—C24—C23120.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.952.893.735 (3)149
C23—H23···Cg2ii0.952.953.803 (4)150
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H26N2O
Mr370.48
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)180
a, b, c (Å)18.0393 (18), 8.9854 (7), 12.3947 (9)
V3)2009.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.48 × 0.36 × 0.28
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19030, 2021, 1581
Rint0.059
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.15
No. of reflections2021
No. of parameters256
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.15

Computer programs: IPDS (Stoe, 2000), X-RED (Stoe, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cg1i0.952.893.735 (3)149
C23—H23···Cg2ii0.952.953.803 (4)150
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z1/2.
 

References

First citationAlonso-Perarnau, D., De March, P., El Arrad, M., Figueredo, M., Font, J. & Parella, T. (1997). Tetrahedron, 53, 14763–14772.  CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrüning, I., Grashey, R., Hauck, H., Huisgen, R. & Seidel, H. (1973). Org. Synth. Coll. V, pp. 1124–1129.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCacciarini, M., Cordero, M., Faggi, C. & Goti, A. (2000). Molecules, 5, 637–647.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDaran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329–o331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 1, 55–62.  Google Scholar
First citationFihi, R., Majidi, L. & Zair, T. (2004). J. Mar. Chim. Heterocycl. 3, 52–56.  CAS Google Scholar
First citationPariera, S. M., Savage, J. P., Simpson, G. W., Greenword, R. J. & Mackay, M. F. (1993). Tetrahedron, 6, 1401–1412.  Google Scholar
First citationRoussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471–476.  Web of Science CrossRef CAS Google Scholar
First citationRoussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie (2000). IPDS Manual. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds