organic compounds
1′,3′,3′-Trimethyl-2,3-diphenyl-2,3-dihydroisoxazole-5(4H)-spiro-2′-indoline
aLaboratoire des Substances Naturelles & Synthèse et Dynamique Moléculaire, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco, bLaboratoire de Chimie de Coordination, UPR–CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex, France, and cLaboratoire de Physico-Chimie des Matèriaux, Faculté des Sciences et Techniques, BP 509, Errachidia, Morocco
*Correspondence e-mail: mohamedazrour@yahoo.fr
Two 25H26N2O, have been prepared by cycloaddition between 1,3,3-trimethyl-2-methyleneindoline and C-phenyl-N-phenylnitrone. The stereochemistry of the major diastereoisomer, viz. S,R/R,S, is confirmed by the X-ray analysis. The oxazole and the pyrole rings have envelope conformations. The packing is stabilized by weak C—H⋯π interactions involving the phenyl ring attached to the N atom of the oxazole and the phenyl ring of the indole fragment.
of the title compound, CRelated literature
For general background, see: Alonso-Perarnau et al. (1997); Cacciarini et al. (2000); Pariera et al. (1993). For related studies, see: Daran et al. (2006); Fihi et al. (1995, 2004); Roussel et al. (2000, 2003). For the synthetic procedure, see: Brüning et al. (1973). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: IPDS (Stoe & Cie, 2000); cell IPDS; data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809002062/fl2228sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002062/fl2228Isup2.hkl
2-Methylene-1,3,3-trimethylindoline (1) is a commercial product. C-phenyl, N-diphenylnitrone (2) was synthesized according to the literature procedure (Brüning et al., 1973). A solution of (2) (1 g, 6 mmol), (1) (1,12 g, 6 mmol) in ethylacetate (40 ml) was stirred at reflux for 24 h. The solvent was then evaporated under reduced pressure. The residue was crystallized from ethanol, leading to a mixture of diastereiosomers (3) and (3'). They were separated and purified by
on silica gel (eluant: dichloromethane / hexane: 10 / 90). The spirocompounds were finally recrystallized from dichloromethane.All H atoms were fixed geometrically and treated as riding on their parent atoms with C—H = 0.98 Å (methyl), 0.99 Å (methylene), 1.0 Å (methine) and 0.95 Å (aromatic) with Uiso(H) = 1.2Ueq(aromatic, methylene and methine) or Uiso(H) = 1.5Ueq(methyl).
In the absence of significant
the could not be reliably determined and the Friedel pairs were merged and any references to the were removed.Data collection: IPDS (Stoe, 2000); cell
IPDS (Stoe, 2000); data reduction: X-RED (Stoe, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C25H26N2O | F(000) = 792 |
Mr = 370.48 | Dx = 1.225 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 8000 reflections |
a = 18.0393 (18) Å | θ = 1.7–26.2° |
b = 8.9854 (7) Å | µ = 0.08 mm−1 |
c = 12.3947 (9) Å | T = 180 K |
V = 2009.1 (3) Å3 | Prism, colorless |
Z = 4 | 0.48 × 0.36 × 0.28 mm |
Stoe IPDS diffractometer | 1581 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.059 |
Graphite monochromator | θmax = 26.0°, θmin = 2.5° |
ϕ scans | h = −22→22 |
19030 measured reflections | k = −11→11 |
2021 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.15 | w = 1/[σ2(Fo2) + (0.061P)2] where P = (Fo2 + 2Fc2)/3 |
2021 reflections | (Δ/σ)max = 0.007 |
256 parameters | Δρmax = 0.26 e Å−3 |
1 restraint | Δρmin = −0.15 e Å−3 |
C25H26N2O | V = 2009.1 (3) Å3 |
Mr = 370.48 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 18.0393 (18) Å | µ = 0.08 mm−1 |
b = 8.9854 (7) Å | T = 180 K |
c = 12.3947 (9) Å | 0.48 × 0.36 × 0.28 mm |
Stoe IPDS diffractometer | 1581 reflections with I > 2σ(I) |
19030 measured reflections | Rint = 0.059 |
2021 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 1 restraint |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.15 | Δρmax = 0.26 e Å−3 |
2021 reflections | Δρmin = −0.15 e Å−3 |
256 parameters |
Experimental. The data were collected on a Stoe Imaging Plate Diffraction System (IPDS). The crystal-to-detector distance was 70 mm. 167 frames (4 min per frame) were obtained with 0 < ϕ < 250.5° and with the crystals rotated through 1.5° in ϕ. Coverage of the unique set was over 97.4% complete to at least 26.04°. Crystal decay was monitored by measuring 200 reflections per frame. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.43438 (17) | 0.9280 (3) | 0.0510 (3) | 0.0360 (7) | |
C2 | 0.52004 (18) | 0.9356 (3) | 0.0701 (3) | 0.0398 (7) | |
C3 | 0.53941 (16) | 1.0776 (3) | 0.0091 (3) | 0.0346 (7) | |
C4 | 0.60643 (18) | 1.1346 (4) | −0.0231 (3) | 0.0470 (8) | |
H4 | 0.6508 | 1.0802 | −0.0111 | 0.056* | |
C5 | 0.6086 (2) | 1.2734 (4) | −0.0738 (3) | 0.0523 (9) | |
H5 | 0.6547 | 1.3141 | −0.0964 | 0.063* | |
C6 | 0.5439 (2) | 1.3510 (4) | −0.0909 (3) | 0.0482 (9) | |
H6 | 0.5460 | 1.4452 | −0.1256 | 0.058* | |
C7 | 0.47568 (18) | 1.2952 (3) | −0.0588 (3) | 0.0412 (7) | |
H7 | 0.4312 | 1.3493 | −0.0710 | 0.049* | |
C8 | 0.47495 (15) | 1.1576 (3) | −0.0082 (3) | 0.0327 (7) | |
C9 | 0.34450 (16) | 0.7260 (3) | 0.0744 (3) | 0.0363 (7) | |
H9 | 0.2955 | 0.7656 | 0.0500 | 0.044* | |
C10 | 0.38766 (19) | 0.8462 (4) | 0.1354 (3) | 0.0458 (8) | |
H10A | 0.3531 | 0.9161 | 0.1713 | 0.055* | |
H10B | 0.4199 | 0.8006 | 0.1908 | 0.055* | |
C21 | 0.36716 (14) | 0.6294 (3) | −0.1120 (2) | 0.0294 (6) | |
C22 | 0.40480 (18) | 0.6491 (3) | −0.2083 (3) | 0.0367 (7) | |
H22 | 0.4453 | 0.7164 | −0.2117 | 0.044* | |
C23 | 0.38362 (18) | 0.5708 (3) | −0.2998 (3) | 0.0429 (7) | |
H23 | 0.4091 | 0.5856 | −0.3660 | 0.051* | |
C24 | 0.32514 (17) | 0.4710 (4) | −0.2943 (3) | 0.0438 (8) | |
H24 | 0.3110 | 0.4163 | −0.3565 | 0.053* | |
C25 | 0.28787 (18) | 0.4513 (4) | −0.1993 (3) | 0.0414 (8) | |
H25 | 0.2482 | 0.3821 | −0.1959 | 0.050* | |
C26 | 0.30746 (15) | 0.5317 (3) | −0.1074 (3) | 0.0352 (7) | |
H26 | 0.2803 | 0.5199 | −0.0423 | 0.042* | |
C91 | 0.33383 (16) | 0.5862 (3) | 0.1405 (3) | 0.0359 (7) | |
C92 | 0.39087 (17) | 0.4871 (3) | 0.1574 (3) | 0.0418 (8) | |
H92 | 0.4380 | 0.5056 | 0.1259 | 0.050* | |
C93 | 0.3806 (2) | 0.3610 (4) | 0.2195 (3) | 0.0511 (9) | |
H93 | 0.4205 | 0.2936 | 0.2302 | 0.061* | |
C94 | 0.3131 (2) | 0.3330 (4) | 0.2658 (3) | 0.0537 (9) | |
H94 | 0.3064 | 0.2460 | 0.3082 | 0.064* | |
C95 | 0.2549 (2) | 0.4299 (4) | 0.2513 (3) | 0.0532 (9) | |
H95 | 0.2083 | 0.4109 | 0.2841 | 0.064* | |
C96 | 0.26512 (18) | 0.5563 (4) | 0.1878 (3) | 0.0462 (8) | |
H96 | 0.2249 | 0.6229 | 0.1767 | 0.055* | |
C111 | 0.33893 (17) | 1.1202 (4) | 0.0002 (4) | 0.0526 (9) | |
H11A | 0.3290 | 1.2248 | 0.0175 | 0.079* | |
H11B | 0.3032 | 1.0567 | 0.0380 | 0.079* | |
H11C | 0.3342 | 1.1051 | −0.0778 | 0.079* | |
C211 | 0.5371 (2) | 0.9600 (4) | 0.1901 (3) | 0.0531 (9) | |
H21A | 0.5894 | 0.9871 | 0.1986 | 0.080* | |
H21B | 0.5270 | 0.8682 | 0.2301 | 0.080* | |
H21C | 0.5058 | 1.0403 | 0.2181 | 0.080* | |
C212 | 0.5604 (2) | 0.7992 (4) | 0.0285 (4) | 0.0576 (11) | |
H21D | 0.5484 | 0.7845 | −0.0479 | 0.086* | |
H21E | 0.5448 | 0.7117 | 0.0698 | 0.086* | |
H21F | 0.6139 | 0.8134 | 0.0366 | 0.086* | |
N1 | 0.41386 (13) | 1.0819 (2) | 0.0341 (2) | 0.0369 (6) | |
N2 | 0.39329 (13) | 0.7023 (2) | −0.0180 (2) | 0.0323 (6) | |
O1 | 0.41789 (11) | 0.8501 (2) | −0.04964 (17) | 0.0370 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0486 (17) | 0.0268 (14) | 0.0327 (18) | −0.0061 (13) | 0.0006 (14) | −0.0026 (13) |
C2 | 0.0508 (18) | 0.0289 (15) | 0.040 (2) | 0.0018 (13) | −0.0082 (15) | 0.0004 (13) |
C3 | 0.0405 (16) | 0.0306 (15) | 0.0327 (19) | −0.0027 (12) | 0.0001 (13) | 0.0003 (12) |
C4 | 0.0412 (17) | 0.0488 (19) | 0.051 (2) | −0.0023 (14) | 0.0057 (15) | −0.0044 (17) |
C5 | 0.061 (2) | 0.052 (2) | 0.045 (2) | −0.0220 (17) | 0.0183 (17) | −0.0051 (16) |
C6 | 0.075 (2) | 0.0369 (18) | 0.033 (2) | −0.0124 (16) | 0.0080 (16) | −0.0010 (14) |
C7 | 0.0545 (18) | 0.0294 (16) | 0.040 (2) | −0.0016 (13) | −0.0020 (15) | 0.0007 (14) |
C8 | 0.0393 (15) | 0.0278 (15) | 0.0308 (17) | −0.0033 (11) | 0.0016 (13) | −0.0016 (12) |
C9 | 0.0392 (16) | 0.0353 (15) | 0.0344 (19) | −0.0024 (13) | 0.0062 (13) | −0.0029 (12) |
C10 | 0.0589 (19) | 0.0389 (17) | 0.040 (2) | −0.0125 (14) | 0.0075 (16) | −0.0062 (15) |
C21 | 0.0326 (14) | 0.0234 (13) | 0.0322 (18) | 0.0021 (11) | −0.0030 (12) | −0.0014 (12) |
C22 | 0.0439 (16) | 0.0333 (15) | 0.0328 (19) | −0.0024 (12) | 0.0017 (13) | 0.0000 (13) |
C23 | 0.0537 (18) | 0.0432 (17) | 0.0318 (18) | 0.0047 (14) | 0.0002 (15) | −0.0054 (15) |
C24 | 0.0491 (18) | 0.0433 (17) | 0.039 (2) | 0.0008 (13) | −0.0094 (16) | −0.0094 (15) |
C25 | 0.0419 (16) | 0.0399 (16) | 0.042 (2) | −0.0044 (13) | −0.0055 (15) | −0.0063 (15) |
C26 | 0.0323 (14) | 0.0364 (15) | 0.0369 (18) | −0.0013 (12) | −0.0045 (13) | 0.0005 (14) |
C91 | 0.0445 (16) | 0.0323 (15) | 0.0307 (17) | −0.0099 (13) | 0.0010 (14) | −0.0021 (13) |
C92 | 0.0427 (16) | 0.0409 (17) | 0.042 (2) | −0.0040 (13) | −0.0009 (14) | −0.0015 (15) |
C93 | 0.061 (2) | 0.0437 (19) | 0.048 (2) | −0.0014 (15) | −0.0055 (17) | 0.0017 (16) |
C94 | 0.066 (2) | 0.0429 (19) | 0.052 (2) | −0.0193 (17) | −0.0025 (18) | 0.0060 (17) |
C95 | 0.054 (2) | 0.058 (2) | 0.047 (2) | −0.0182 (18) | 0.0122 (17) | 0.0016 (18) |
C96 | 0.0472 (17) | 0.0453 (18) | 0.046 (2) | −0.0044 (14) | 0.0023 (16) | −0.0026 (16) |
C111 | 0.0396 (17) | 0.0475 (18) | 0.071 (3) | 0.0017 (14) | −0.0049 (18) | −0.0098 (18) |
C211 | 0.066 (2) | 0.0489 (19) | 0.045 (2) | −0.0085 (16) | −0.0146 (18) | 0.0061 (17) |
C212 | 0.055 (2) | 0.0375 (18) | 0.081 (3) | 0.0098 (16) | −0.0048 (19) | −0.0012 (18) |
N1 | 0.0374 (13) | 0.0269 (12) | 0.0464 (17) | −0.0029 (11) | 0.0025 (11) | −0.0012 (12) |
N2 | 0.0410 (13) | 0.0248 (12) | 0.0311 (15) | −0.0095 (10) | 0.0016 (10) | −0.0016 (11) |
O1 | 0.0570 (13) | 0.0239 (10) | 0.0302 (12) | −0.0113 (8) | 0.0029 (10) | −0.0018 (9) |
C1—N1 | 1.446 (4) | C23—C24 | 1.386 (5) |
C1—O1 | 1.461 (4) | C23—H23 | 0.9500 |
C1—C10 | 1.531 (5) | C24—C25 | 1.367 (5) |
C1—C2 | 1.565 (4) | C24—H24 | 0.9500 |
C2—C212 | 1.516 (5) | C25—C26 | 1.395 (4) |
C2—C3 | 1.523 (4) | C25—H25 | 0.9500 |
C2—C211 | 1.534 (5) | C26—H26 | 0.9500 |
C3—C4 | 1.372 (4) | C91—C92 | 1.377 (4) |
C3—C8 | 1.384 (4) | C91—C96 | 1.397 (4) |
C4—C5 | 1.397 (5) | C92—C93 | 1.382 (5) |
C4—H4 | 0.9500 | C92—H92 | 0.9500 |
C5—C6 | 1.376 (5) | C93—C94 | 1.369 (6) |
C5—H5 | 0.9500 | C93—H93 | 0.9500 |
C6—C7 | 1.388 (5) | C94—C95 | 1.375 (6) |
C6—H6 | 0.9500 | C94—H94 | 0.9500 |
C7—C8 | 1.387 (4) | C95—C96 | 1.393 (5) |
C7—H7 | 0.9500 | C95—H95 | 0.9500 |
C8—N1 | 1.397 (4) | C96—H96 | 0.9500 |
C9—N2 | 1.460 (4) | C111—N1 | 1.457 (4) |
C9—C91 | 1.512 (4) | C111—H11A | 0.9800 |
C9—C10 | 1.531 (4) | C111—H11B | 0.9800 |
C9—H9 | 1.0000 | C111—H11C | 0.9800 |
C10—H10A | 0.9900 | C211—H21A | 0.9800 |
C10—H10B | 0.9900 | C211—H21B | 0.9800 |
C21—C22 | 1.384 (4) | C211—H21C | 0.9800 |
C21—C26 | 1.390 (4) | C212—H21D | 0.9800 |
C21—N2 | 1.417 (4) | C212—H21E | 0.9800 |
C22—C23 | 1.388 (5) | C212—H21F | 0.9800 |
C22—H22 | 0.9500 | N2—O1 | 1.454 (3) |
N1—C1—O1 | 106.4 (2) | C25—C24—H24 | 120.0 |
N1—C1—C10 | 114.6 (3) | C23—C24—H24 | 120.0 |
O1—C1—C10 | 104.0 (2) | C24—C25—C26 | 120.8 (3) |
N1—C1—C2 | 103.5 (2) | C24—C25—H25 | 119.6 |
O1—C1—C2 | 110.6 (2) | C26—C25—H25 | 119.6 |
C10—C1—C2 | 117.4 (3) | C21—C26—C25 | 119.3 (3) |
C212—C2—C3 | 113.4 (3) | C21—C26—H26 | 120.3 |
C212—C2—C211 | 110.5 (3) | C25—C26—H26 | 120.3 |
C3—C2—C211 | 108.4 (3) | C92—C91—C96 | 118.4 (3) |
C212—C2—C1 | 112.8 (3) | C92—C91—C9 | 121.6 (3) |
C3—C2—C1 | 100.8 (2) | C96—C91—C9 | 120.0 (3) |
C211—C2—C1 | 110.6 (3) | C91—C92—C93 | 120.9 (3) |
C4—C3—C8 | 120.1 (3) | C91—C92—H92 | 119.5 |
C4—C3—C2 | 131.2 (3) | C93—C92—H92 | 119.5 |
C8—C3—C2 | 108.6 (3) | C94—C93—C92 | 120.2 (3) |
C3—C4—C5 | 119.3 (3) | C94—C93—H93 | 119.9 |
C3—C4—H4 | 120.4 | C92—C93—H93 | 119.9 |
C5—C4—H4 | 120.4 | C93—C94—C95 | 120.5 (3) |
C6—C5—C4 | 119.9 (3) | C93—C94—H94 | 119.8 |
C6—C5—H5 | 120.1 | C95—C94—H94 | 119.8 |
C4—C5—H5 | 120.1 | C94—C95—C96 | 119.3 (3) |
C5—C6—C7 | 121.7 (3) | C94—C95—H95 | 120.3 |
C5—C6—H6 | 119.2 | C96—C95—H95 | 120.3 |
C7—C6—H6 | 119.2 | C95—C96—C91 | 120.7 (3) |
C8—C7—C6 | 117.4 (3) | C95—C96—H96 | 119.7 |
C8—C7—H7 | 121.3 | C91—C96—H96 | 119.7 |
C6—C7—H7 | 121.3 | N1—C111—H11A | 109.5 |
C3—C8—C7 | 121.7 (3) | N1—C111—H11B | 109.5 |
C3—C8—N1 | 110.6 (3) | H11A—C111—H11B | 109.5 |
C7—C8—N1 | 127.7 (3) | N1—C111—H11C | 109.5 |
N2—C9—C91 | 112.4 (2) | H11A—C111—H11C | 109.5 |
N2—C9—C10 | 100.6 (2) | H11B—C111—H11C | 109.5 |
C91—C9—C10 | 112.6 (3) | C2—C211—H21A | 109.5 |
N2—C9—H9 | 110.3 | C2—C211—H21B | 109.5 |
C91—C9—H9 | 110.3 | H21A—C211—H21B | 109.5 |
C10—C9—H9 | 110.3 | C2—C211—H21C | 109.5 |
C1—C10—C9 | 106.4 (3) | H21A—C211—H21C | 109.5 |
C1—C10—H10A | 110.5 | H21B—C211—H21C | 109.5 |
C9—C10—H10A | 110.5 | C2—C212—H21D | 109.5 |
C1—C10—H10B | 110.5 | C2—C212—H21E | 109.5 |
C9—C10—H10B | 110.5 | H21D—C212—H21E | 109.5 |
H10A—C10—H10B | 108.6 | C2—C212—H21F | 109.5 |
C22—C21—C26 | 119.7 (3) | H21D—C212—H21F | 109.5 |
C22—C21—N2 | 119.1 (2) | H21E—C212—H21F | 109.5 |
C26—C21—N2 | 121.0 (3) | C8—N1—C1 | 108.5 (2) |
C21—C22—C23 | 120.3 (3) | C8—N1—C111 | 120.6 (3) |
C21—C22—H22 | 119.8 | C1—N1—C111 | 120.4 (2) |
C23—C22—H22 | 119.8 | C21—N2—O1 | 107.6 (2) |
C24—C23—C22 | 119.8 (3) | C21—N2—C9 | 120.8 (2) |
C24—C23—H23 | 120.1 | O1—N2—C9 | 105.2 (2) |
C22—C23—H23 | 120.1 | N2—O1—C1 | 105.6 (2) |
C25—C24—C23 | 120.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cg1i | 0.95 | 2.89 | 3.735 (3) | 149 |
C23—H23···Cg2ii | 0.95 | 2.95 | 3.803 (4) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C25H26N2O |
Mr | 370.48 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 180 |
a, b, c (Å) | 18.0393 (18), 8.9854 (7), 12.3947 (9) |
V (Å3) | 2009.1 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.48 × 0.36 × 0.28 |
Data collection | |
Diffractometer | Stoe IPDS diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19030, 2021, 1581 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.105, 1.15 |
No. of reflections | 2021 |
No. of parameters | 256 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.15 |
Computer programs: IPDS (Stoe, 2000), X-RED (Stoe, 1996), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···Cg1i | 0.95 | 2.89 | 3.735 (3) | 149 |
C23—H23···Cg2ii | 0.95 | 2.95 | 3.803 (4) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, z−1/2. |
References
Alonso-Perarnau, D., De March, P., El Arrad, M., Figueredo, M., Font, J. & Parella, T. (1997). Tetrahedron, 53, 14763–14772. CrossRef CAS Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Brüning, I., Grashey, R., Hauck, H., Huisgen, R. & Seidel, H. (1973). Org. Synth. Coll. V, pp. 1124–1129. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cacciarini, M., Cordero, M., Faggi, C. & Goti, A. (2000). Molecules, 5, 637–647. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Daran, J.-C., Fihi, R., Roussel, C., Laghrib, N., Azrour, M., Ciamala, K. & Vebreld, J. (2006). Acta Cryst. E62, o329–o331. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fihi, R., Ciamala, K., Vebrel, J. & Rodier, N. (1995). Bull. Soc. Chim. Belg. 104, 1, 55–62. Google Scholar
Fihi, R., Majidi, L. & Zair, T. (2004). J. Mar. Chim. Heterocycl. 3, 52–56. CAS Google Scholar
Pariera, S. M., Savage, J. P., Simpson, G. W., Greenword, R. J. & Mackay, M. F. (1993). Tetrahedron, 6, 1401–1412. Google Scholar
Roussel, C., Fihi, R., Ciamala, K., Audebert, P. & Vebrel, J. (2000). New J. Chem. 24, 471–476. Web of Science CrossRef CAS Google Scholar
Roussel, C., Fihi, R., Ciamala, K., Vebrel, J., Zair, T. & Riche, C. (2003). Org. Biomol. Chem. 1, 2689–2698. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1996). X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2000). IPDS Manual. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic spirocompounds are of interest in synthetic organic chemistry (Pariera et al., 1993; Alonso-Perarnau et al., 1997; Cacciarini et al., 2000). The cycloaddition between dipolarophiles bearing an exocyclic carbon-carbon double bond and appropriate1,3-dipoles is one of the best methods for the synthesis of bicyclic spirocompounds.
As part of our research on bicyclic spirocompounds (Fihi et al., 1995; Roussel et al., 2000, 2003; Daran et al., 2006), we reported that methylene lactones react with 1,3-dipoles with high selectivity. In a previous article (Fihi et al., 2004) we reported that 1,3-dipolar cycloaddition of arylnitriloxydes and N-Phenylarylnitrilimines to 5-chloro-2-methylene-1,3,3-trimethylindoline is regiospecific. Arylnitriloxydes reactions lead to spiroheterocyclic compounds, whereas N-phenylarylnitrilimines reactions afforded evolutives products.
We report here, the cycloaddition of C-phenyl-N-phenylnitrone (2) to 2-methylene-1,3,3-trimethylindoline (1). The reaction produced a mixture of diastereoisomers (Fig. 2). The ratio (77 / 23%) of which was evaluated by 1HNMR (performed on the crude reaction mixture). To confirm unambiguously the structure assignment of (3) and (3'), and to establish the stereochemistry of each spiroheterocycle, an X-ray structural analyses was carried out on the major spirocompound, because the 1H and 13CNMR studies did not provide unambiguous information.
The stereochemistry of the major diastereoisomer, S,R/R,S, is confirmed by the X-ray analyses (Fig. 1). The oxazole and the pyrole rings have an envelope conformation with puckering parameters Q(2)= 0.399 (3)°, ϕ(2)= 218.9 (5)° and Q(2)= 0.274 (3)°, ϕ(2)= 218.9 (7)° (Cremer & Pople, 1975). The packing is stabilized by weak C—H···π interactions involving the phenyl attached to the nitrogen of the oxazole and the phenyl of the indole fragment (Table 1: Cg1is the centroid of the C21—C26 ring and Cg2 is the centroid of the C3—C8 ring).