organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 5-(4-chloro­phen­yl)-2-[(Z)-(meth­oxy­carbon­yl)methyl­ene]-7-methyl-3-oxo-3,5-di­hydro-2H-thia­zolo[3,2-a]pyrimi­dine-6-carboxyl­ate

aDepartment of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414000, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
*Correspondence e-mail: houzhaohui1972@163.com

(Received 14 January 2009; accepted 20 January 2009; online 23 January 2009)

The title compound, C19H17ClN2O5S, was synthesized by the reaction of ethyl 6-(4-chloro­phen­yl)-2-mercapto-4-methyl-1,6-dihydro­pyrimidine-5-carboxyl­ate and dimethyl acetyl­ene­dicarboxyl­ate in methanol. In the mol­ecule, the nearly planar thia­zole ring, with a mean deviation from the plane of 0.0108 (3) Å, is fused with a dihydro­pyrimidine ring in a flattened half-chair conformation.

Related literature

For the biological activity of fused pyrimidine derivatives, see: Ashok et al. (2007[Ashok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380-385.]); Monks et al. (1991[Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). J. Natl Cancer Inst. 83, 757-766.]). For structures containing a fused pyrimidine ring, see: Liu et al. (2004[Liu, X.-G., Feng, Y.-Q., Li, X.-F. & Gao, B. (2004). Acta Cryst. E60, o464-o465.]); Sridhar et al. (2006[Sridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687-o690.]); Hou (2009[Hou, Z.-H. (2009). Acta Cryst. E65, o235.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN2O5S

  • Mr = 420.86

  • Triclinic, [P \overline 1]

  • a = 9.6687 (19) Å

  • b = 11.052 (2) Å

  • c = 11.064 (2) Å

  • α = 108.04 (3)°

  • β = 104.70 (3)°

  • γ = 111.82 (3)°

  • V = 948.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 113 (2) K

  • 0.20 × 0.14 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.934, Tmax = 0.966

  • 6937 measured reflections

  • 3324 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.08

  • 3324 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fused pyrimidine derivatives represent important target molecules due to their highly pronounced biological properties. (Ashok et al., 2007; Monks et al., 1991). In this paper, the structure of the title compound (I) is reported (Fig. 1).

The thiazole ring (C5—N1—C15—C16—S1) has the usual essentially planar geometry observed in other fused thiazolopyrimidine compounds (Liu et al., 2004; Sridhar et al., 2006; Hou, 2009). The thiazole ring makes a dihedral angles of 90.3 (2) ° with the benzene ring (C9–C14). The pyrimidine ring adopts a flattened half-chair conformation. The C16—C17 double bond exist in the Z configuration. Molecular packing (Fig. 2) is stabilized mainly by weak van der Waals forces.

Related literature top

For biological activity of fused pyrimidine derivatives, see: Ashok et al. (2007); Monks et al. (1991). For crystals containing fused pyrimidine, see: Liu et al. (2004); Sridhar et al. (2006); Hou (2009).

Experimental top

A mixture of ethyl 2-mercapto-4-methyl-6-(4-chlorophenyl)-1,6- dihydro-pyrimidine-5-carboxylate (0.01 mol), dimethyl acetylenedicarboxylate (0.01 mol) in methanol (25 ml) was refluxed for 3 h. The reaction mixture was cooled and filtered. The resulting solid was collected and crystallized from methanol to obtain the final product (90% yield, mp 434–435 K). 1H NMR (CDCl3, p.p.m.): 1.20 (t, J=7.0 Hz, 3H), 2.53 (s, 3H), 3.86 (s, 3H), 4.10–4.12 (m, 2H), 6.12 (s, 1H), 6.90 (s, 1H), 7.28–7.32 (m, 4H); The compound was recrystallized by slow evaporation of a methanol solution, yielding yellow, blocklike single crystals suitable for X–ray diffraction.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along a axis.
Ethyl 5-(4-chlorophenyl)-2-[(Z)-(methoxycarbonyl)methylene]-7-methyl-3-oxo- 3,5-dihydro-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C19H17ClN2O5SZ = 2
Mr = 420.86F(000) = 436
Triclinic, P1Dx = 1.474 Mg m3
a = 9.6687 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.052 (2) ÅCell parameters from 3131 reflections
c = 11.064 (2) Åθ = 2.1–27.9°
α = 108.04 (3)°µ = 0.35 mm1
β = 104.70 (3)°T = 113 K
γ = 111.82 (3)°Block, yellow
V = 948.2 (3) Å30.20 × 0.14 × 0.10 mm
Data collection top
Rigaku Saturn
diffractometer
3324 independent reflections
Radiation source: rotating anode2622 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.025
ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 1111
Tmin = 0.934, Tmax = 0.966k = 1313
6937 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
3324 reflections(Δ/σ)max = 0.005
256 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H17ClN2O5Sγ = 111.82 (3)°
Mr = 420.86V = 948.2 (3) Å3
Triclinic, P1Z = 2
a = 9.6687 (19) ÅMo Kα radiation
b = 11.052 (2) ŵ = 0.35 mm1
c = 11.064 (2) ÅT = 113 K
α = 108.04 (3)°0.20 × 0.14 × 0.10 mm
β = 104.70 (3)°
Data collection top
Rigaku Saturn
diffractometer
3324 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2622 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.966Rint = 0.025
6937 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.21 e Å3
3324 reflectionsΔρmin = 0.31 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.27994 (5)0.74177 (5)0.87884 (4)0.01936 (13)
Cl10.83796 (7)0.55727 (6)0.46536 (6)0.04201 (17)
O10.64107 (15)1.21151 (13)0.64452 (12)0.0252 (3)
O20.83679 (14)1.16857 (12)0.74775 (11)0.0186 (3)
O30.73679 (14)0.84993 (13)0.99591 (12)0.0221 (3)
O40.19590 (15)0.58671 (13)1.02307 (12)0.0243 (3)
O50.35078 (15)0.50934 (13)1.13158 (13)0.0262 (3)
N10.54957 (16)0.88470 (15)0.85693 (13)0.0157 (3)
N20.31742 (17)0.89611 (16)0.73589 (14)0.0200 (3)
C10.3241 (2)1.0508 (2)0.62209 (18)0.0232 (4)
H1A0.37091.15410.67650.035*
H1B0.21151.00240.60750.035*
H1C0.33001.03140.53330.035*
C20.4179 (2)0.99530 (18)0.69891 (16)0.0178 (4)
C30.5774 (2)1.03422 (18)0.73312 (16)0.0158 (4)
C40.6610 (2)0.96835 (18)0.80727 (17)0.0158 (4)
H40.76121.04820.88890.019*
C50.3874 (2)0.85167 (18)0.81262 (16)0.0170 (4)
C60.6833 (2)1.14651 (18)0.70222 (16)0.0173 (4)
C70.9543 (2)1.27881 (19)0.72632 (19)0.0233 (4)
H7A0.98461.37590.79210.028*
H7B0.90791.26700.63200.028*
C81.1019 (2)1.2568 (2)0.7497 (2)0.0328 (5)
H8A1.14001.25950.84010.049*
H8B1.18741.33300.74550.049*
H8C1.07231.16400.67860.049*
C90.7070 (2)0.86924 (18)0.71575 (17)0.0155 (4)
C100.8681 (2)0.89652 (19)0.76003 (18)0.0210 (4)
H100.94820.97780.84340.025*
C110.9108 (2)0.8038 (2)0.6811 (2)0.0253 (4)
H111.01890.82260.71020.030*
C120.7895 (2)0.6831 (2)0.5585 (2)0.0254 (4)
C130.6299 (2)0.6568 (2)0.50944 (19)0.0236 (4)
H130.55090.57760.42420.028*
C140.5891 (2)0.75084 (18)0.58961 (17)0.0186 (4)
H140.48180.73400.55820.022*
C150.5986 (2)0.82795 (18)0.94441 (16)0.0167 (4)
C160.4553 (2)0.73775 (18)0.96435 (17)0.0178 (4)
C170.4656 (2)0.66465 (18)1.04032 (17)0.0193 (4)
H170.56320.66501.07870.023*
C180.3229 (2)0.58440 (18)1.06279 (17)0.0200 (4)
C190.2160 (3)0.4307 (2)1.1621 (2)0.0341 (5)
H19A0.20630.49911.23320.051*
H19B0.23740.36561.19450.051*
H19C0.11560.37561.07870.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0146 (2)0.0231 (3)0.0214 (2)0.0090 (2)0.00922 (19)0.0103 (2)
Cl10.0664 (4)0.0408 (3)0.0612 (4)0.0422 (3)0.0514 (3)0.0323 (3)
O10.0212 (7)0.0253 (7)0.0322 (7)0.0122 (6)0.0078 (6)0.0180 (6)
O20.0143 (6)0.0174 (6)0.0248 (6)0.0073 (5)0.0076 (5)0.0112 (5)
O30.0144 (7)0.0281 (7)0.0257 (7)0.0108 (6)0.0070 (5)0.0152 (6)
O40.0203 (7)0.0257 (7)0.0259 (7)0.0094 (6)0.0118 (6)0.0108 (6)
O50.0321 (8)0.0242 (7)0.0363 (7)0.0160 (7)0.0232 (7)0.0200 (6)
N10.0134 (8)0.0181 (8)0.0170 (7)0.0084 (7)0.0066 (6)0.0083 (6)
N20.0156 (8)0.0245 (9)0.0232 (8)0.0119 (7)0.0087 (6)0.0115 (7)
C10.0180 (10)0.0290 (11)0.0252 (9)0.0152 (9)0.0066 (8)0.0127 (8)
C20.0195 (10)0.0186 (9)0.0140 (8)0.0110 (8)0.0062 (7)0.0045 (7)
C30.0169 (9)0.0153 (9)0.0147 (8)0.0099 (8)0.0053 (7)0.0047 (7)
C40.0120 (9)0.0165 (9)0.0173 (8)0.0058 (7)0.0054 (7)0.0079 (7)
C50.0129 (9)0.0164 (9)0.0173 (8)0.0066 (8)0.0064 (7)0.0032 (7)
C60.0175 (9)0.0162 (9)0.0150 (8)0.0092 (8)0.0049 (7)0.0037 (7)
C70.0163 (10)0.0206 (10)0.0287 (10)0.0040 (8)0.0071 (8)0.0143 (8)
C80.0212 (11)0.0423 (13)0.0442 (12)0.0149 (10)0.0168 (9)0.0284 (11)
C90.0165 (9)0.0172 (9)0.0204 (9)0.0103 (8)0.0101 (7)0.0130 (7)
C100.0167 (10)0.0217 (10)0.0292 (10)0.0099 (8)0.0106 (8)0.0152 (8)
C110.0205 (10)0.0301 (11)0.0445 (12)0.0179 (9)0.0220 (9)0.0253 (10)
C120.0403 (12)0.0271 (11)0.0373 (11)0.0257 (10)0.0311 (10)0.0240 (9)
C130.0311 (11)0.0199 (10)0.0236 (9)0.0137 (9)0.0141 (8)0.0104 (8)
C140.0175 (10)0.0200 (9)0.0211 (9)0.0102 (8)0.0086 (8)0.0110 (8)
C150.0192 (10)0.0156 (9)0.0143 (8)0.0095 (8)0.0067 (7)0.0048 (7)
C160.0160 (9)0.0166 (9)0.0168 (8)0.0077 (8)0.0075 (7)0.0027 (7)
C170.0196 (10)0.0185 (9)0.0190 (9)0.0100 (8)0.0081 (8)0.0064 (7)
C180.0235 (10)0.0166 (9)0.0165 (9)0.0090 (8)0.0091 (8)0.0040 (7)
C190.0415 (13)0.0302 (12)0.0459 (12)0.0164 (11)0.0317 (11)0.0252 (10)
Geometric parameters (Å, º) top
S1—C161.7436 (17)C7—C81.507 (2)
S1—C51.7582 (17)C7—H7A0.9700
Cl1—C121.7484 (18)C7—H7B0.9700
O1—C61.2084 (18)C8—H8A0.9600
O2—C61.338 (2)C8—H8B0.9600
O2—C71.4556 (19)C8—H8C0.9600
O3—C151.2063 (19)C9—C141.383 (3)
O4—C181.208 (2)C9—C101.389 (2)
O5—C181.3390 (19)C10—C111.388 (2)
O5—C191.460 (2)C10—H100.9300
N1—C51.380 (2)C11—C121.380 (3)
N1—C151.385 (2)C11—H110.9300
N1—C41.4804 (19)C12—C131.380 (3)
N2—C51.278 (2)C13—C141.390 (2)
N2—C21.415 (2)C13—H130.9300
C1—C21.506 (2)C14—H140.9300
C1—H1A0.9600C15—C161.492 (2)
C1—H1B0.9600C16—C171.344 (2)
C1—H1C0.9600C17—C181.467 (2)
C2—C31.348 (2)C17—H170.9300
C3—C61.484 (2)C19—H19A0.9600
C3—C41.525 (2)C19—H19B0.9600
C4—C91.525 (2)C19—H19C0.9600
C4—H40.9800
C16—S1—C590.62 (8)C7—C8—H8C109.5
C6—O2—C7116.24 (12)H8A—C8—H8C109.5
C18—O5—C19115.21 (14)H8B—C8—H8C109.5
C5—N1—C15115.79 (14)C14—C9—C10119.53 (15)
C5—N1—C4121.86 (13)C14—C9—C4120.55 (14)
C15—N1—C4122.26 (13)C10—C9—C4119.91 (16)
C5—N2—C2116.82 (14)C11—C10—C9120.70 (18)
C2—C1—H1A109.5C11—C10—H10119.7
C2—C1—H1B109.5C9—C10—H10119.7
H1A—C1—H1B109.5C12—C11—C10118.56 (16)
C2—C1—H1C109.5C12—C11—H11120.7
H1A—C1—H1C109.5C10—C11—H11120.7
H1B—C1—H1C109.5C11—C12—C13121.80 (16)
C3—C2—N2122.50 (14)C11—C12—Cl1119.10 (14)
C3—C2—C1126.35 (16)C13—C12—Cl1119.07 (16)
N2—C2—C1111.13 (14)C12—C13—C14118.87 (18)
C2—C3—C6121.48 (14)C12—C13—H13120.6
C2—C3—C4122.65 (15)C14—C13—H13120.6
C6—C3—C4115.87 (14)C9—C14—C13120.43 (16)
N1—C4—C3108.32 (12)C9—C14—H14119.8
N1—C4—C9109.42 (13)C13—C14—H14119.8
C3—C4—C9113.84 (12)O3—C15—N1124.33 (15)
N1—C4—H4108.4O3—C15—C16126.19 (14)
C3—C4—H4108.4N1—C15—C16109.48 (13)
C9—C4—H4108.4C17—C16—C15122.53 (15)
N2—C5—N1126.49 (15)C17—C16—S1125.85 (14)
N2—C5—S1121.06 (13)C15—C16—S1111.62 (11)
N1—C5—S1112.42 (11)C16—C17—C18120.08 (15)
O1—C6—O2123.10 (15)C16—C17—H17120.0
O1—C6—C3126.17 (15)C18—C17—H17120.0
O2—C6—C3110.73 (13)O4—C18—O5124.64 (15)
O2—C7—C8106.32 (13)O4—C18—C17123.25 (15)
O2—C7—H7A110.5O5—C18—C17112.11 (14)
C8—C7—H7A110.5O5—C19—H19A109.5
O2—C7—H7B110.5O5—C19—H19B109.5
C8—C7—H7B110.5H19A—C19—H19B109.5
H7A—C7—H7B108.7O5—C19—H19C109.5
C7—C8—H8A109.5H19A—C19—H19C109.5
C7—C8—H8B109.5H19B—C19—H19C109.5
H8A—C8—H8B109.5
C5—N2—C2—C34.8 (2)C3—C4—C9—C1456.3 (2)
C5—N2—C2—C1173.86 (14)N1—C4—C9—C10114.05 (16)
N2—C2—C3—C6175.50 (14)C3—C4—C9—C10124.61 (16)
C1—C2—C3—C62.9 (3)C14—C9—C10—C111.9 (2)
N2—C2—C3—C43.6 (2)C4—C9—C10—C11177.13 (13)
C1—C2—C3—C4178.02 (15)C9—C10—C11—C120.7 (2)
C5—N1—C4—C312.4 (2)C10—C11—C12—C133.4 (2)
C15—N1—C4—C3171.19 (13)C10—C11—C12—Cl1174.78 (11)
C5—N1—C4—C9112.22 (16)C11—C12—C13—C143.3 (2)
C15—N1—C4—C964.19 (19)Cl1—C12—C13—C14174.86 (12)
C2—C3—C4—N111.4 (2)C10—C9—C14—C132.0 (2)
C6—C3—C4—N1167.76 (13)C4—C9—C14—C13177.04 (13)
C2—C3—C4—C9110.58 (18)C12—C13—C14—C90.5 (2)
C6—C3—C4—C970.30 (19)C5—N1—C15—O3177.63 (15)
C2—N2—C5—N13.7 (2)C4—N1—C15—O35.8 (2)
C2—N2—C5—S1174.06 (11)C5—N1—C15—C162.09 (19)
C15—N1—C5—N2177.49 (15)C4—N1—C15—C16174.52 (13)
C4—N1—C5—N25.9 (3)O3—C15—C16—C172.8 (3)
C15—N1—C5—S10.44 (18)N1—C15—C16—C17177.46 (15)
C4—N1—C5—S1176.18 (11)O3—C15—C16—S1176.86 (14)
C16—S1—C5—N2179.16 (14)N1—C15—C16—S12.86 (16)
C16—S1—C5—N11.10 (13)C5—S1—C16—C17178.09 (16)
C7—O2—C6—O11.0 (2)C5—S1—C16—C152.24 (12)
C7—O2—C6—C3178.78 (13)C15—C16—C17—C18176.57 (14)
C2—C3—C6—O10.9 (3)S1—C16—C17—C183.1 (2)
C4—C3—C6—O1180.00 (15)C19—O5—C18—O42.1 (2)
C2—C3—C6—O2178.93 (14)C19—O5—C18—C17177.95 (14)
C4—C3—C6—O20.21 (19)C16—C17—C18—O44.6 (3)
C6—O2—C7—C8165.55 (14)C16—C17—C18—O5175.35 (15)
N1—C4—C9—C1465.01 (17)

Experimental details

Crystal data
Chemical formulaC19H17ClN2O5S
Mr420.86
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)9.6687 (19), 11.052 (2), 11.064 (2)
α, β, γ (°)108.04 (3), 104.70 (3), 111.82 (3)
V3)948.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.20 × 0.14 × 0.10
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.934, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
6937, 3324, 2622
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.090, 1.08
No. of reflections3324
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationAshok, M., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem. 42, 380–385.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHou, Z.-H. (2009). Acta Cryst. E65, o235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, X.-G., Feng, Y.-Q., Li, X.-F. & Gao, B. (2004). Acta Cryst. E60, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMonks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J. & Boyd, M. (1991). J. Natl Cancer Inst. 83, 757–766.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, B., Ravikumar, K. & Sadanandam, Y. S. (2006). Acta Cryst. C62, o687–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds