organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Dimeth­­oxy-5,12-tetra­cene­quinone

aDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura@eng.u-hyogo.ac.jp

(Received 17 December 2008; accepted 10 January 2009; online 17 January 2009)

The mol­ecule of the title compound, C20H14O4, is approximately planar [maximum deviation 0.168 (2) Å]. The two meth­oxy groups are slightly twisted relative to the plane of the 5,12-tetra­cenequinone system, with twist angles of 3.3 (3) and 5.6 (2)°. All O atoms are involved in intermolecular C—H⋯O inter­actions and the mol­ecules are arranged into slipped face-to-face stacks along the b axis via ππ inter­actions with an inter­planar distance of 3.407 (2) Å.

Related literature

For general background, see: Kitamura et al. (2008[Kitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2008). Acta Cryst. E64, o1802.]). For the synthetic procedures, see: McOmie & Perry (1973[McOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416-417.]); Vets et al. (2004[Vets, N., Smet, M. & Dehaen, W. (2004). Tetrahedron Lett. 45, 7287-7289.]). For another synthetic method leading to the title compound, see: Reichwagen et al. (2005[Reichwagen, J., Hopf, H., Del Guerzo, A., Belin, C., Bouas-Laurent, H. & Desvergne, J.-P. (2005). Org. Lett. 7, 971-974.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14O4

  • Mr = 318.31

  • Monoclinic, P 21 /c

  • a = 8.290 (3) Å

  • b = 6.9781 (19) Å

  • c = 25.779 (8) Å

  • β = 97.883 (1)°

  • V = 1477.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.1 mm−1

  • T = 223 K

  • 0.5 × 0.1 × 0.05 mm

Data collection
  • Rigaku Mercury CCD area-detector diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.988, Tmax = 0.997

  • 11405 measured reflections

  • 3370 independent reflections

  • 2773 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 1.12

  • 3370 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.94 2.30 3.210 (2) 162
C15—H15⋯O4ii 0.94 2.60 3.383 (2) 141
C20—H20B⋯O1iii 0.97 2.55 3.486 (2) 162
C20—H20B⋯O2iii 0.97 2.48 3.206 (2) 131
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z.

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Although the title compound (I) was already synthesized (Reichwagen et al., 2005), the X-ray structre was not reported. We prepared 2,3-dimethoxytetracene from 8,9-dimethoxy-5,12-tetracenequinone (McOmie & Perry, 1973), and attemped to perform the X-ray analysis of crystals made by recrystallization from a hot DMF solution under air and light. The analysis revealed that the molecule was not as expected 2,3-dimethoxytetracene but the title compound. Quinones have a weak dipole moment along the molecular long axis and are expected to take a antiparallel arrangement with respect to one another. The latter propensity may lead to the formation of face-to-face π-overlap along the stacking direction (Kitamura et al., 2008).

The molecular structure is shown in Fig. 1. The molecule is approximately planar. The displacements of atoms O1, O2, O3, O4, C19, and C20 relative to the plane of the tetracene framework are -0.025 (1), -0.022 (1), -0.092 (1), 0.029 (1), -0.168 (2), and -0.113 (2) Å, respectively. The torsion angles of the two methoxy groups are -5.6 (2)° for C1—C2—O1—C19 and 3.3 (3)° for C4—C3—O2—C20, displaying that the Cmethyl—O bonds are directed along the molecular short axis.

In the crystal structure, the molecules are linked through intermolecular C—H···O hydrogen bonds between the methoxy groups as well as between the tetracene groups (Table 1, Fig. 2). Interestingly, along the stacking direction, not antiparallel but just slipped π-π stacking can be found. The interplanar distance is 3.407 (2) Å. The dipole moment of (I) was calculated by MO calculations (B3LYP/6–31G*), which afforded an estimation of 0.01 debye. Thus, (I) is a non-polar molecule. Therefore, it seems reasonably to conclude that the electrostatic property can determine either an antiparallel or a non-antiparallel arrangement.

Related literature top

For general background, see: Kitamura et al. (2008). For the synthetic procedures, see: McOmie & Perry (1973); Vets et al. (2004). For another synthetic method leading to the title compound, see: Reichwagen et al. (2005).

Experimental top

8,9-Dimethoxy-5,12-tetracenequinone was prepared according to the method described by McOmie & Perry (1973). Transformation of tetracenequinone into tetracene was performed using two successive LiAlH4 reductions by Vets et al. (2004). To a suspension of LiAlH4 (224 mg, 5.9 mmol) in dry THF (15 ml), 8,9-dimethoxy-5,12-tetracenequinone (479 mg, 1.5 mmol) was added under nitrogen. The mixture was refluxed for 30 min, cooled to room temperature, and 6M HCl (7 ml) was added under cooling with ice. The residue was filtered, and washed with water, MeOH, and Et2O. After drying, a yellow solid was isolated. The solid was added into a suspension of LiAlH4 (235 mg, 6.2 mmol) in dry THF (15 ml). The mixture was again refluxed for 30 min, cooled to room temperature, and 6M HCl (7 ml) was added under cooling with ice. The product was filtered, and washed with water, MeOH, and Et2O. After drying, 2,3-dimethoxytetracene was obtained (287 mg, 66%) as a yellow solid. Heating the tetracene in DMF under air and light, and then cooling the solution to room temperature resulted in deposition of brown crystals suitable for X-ray analysis.

Refinement top

All H atoms were positioned geometrically and refined using a riding model approximation with C—H = 0.94Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, and C—H = 0.97Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalClear (Rigaku, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound. C-H···O interactions are shown with dashed lines.
2,3-Dimethoxy-5,12-tetracenequinone top
Crystal data top
C20H14O4F(000) = 664
Mr = 318.31Dx = 1.431 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4021 reflections
a = 8.290 (3) Åθ = 3.0–27.5°
b = 6.9781 (19) ŵ = 0.1 mm1
c = 25.779 (8) ÅT = 223 K
β = 97.883 (1)°Prism, brown
V = 1477.2 (8) Å30.5 × 0.1 × 0.05 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3370 independent reflections
Radiation source: rotating-anode X-ray tube2773 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 14.7059 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1010
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 95
Tmin = 0.988, Tmax = 0.997l = 3325
11405 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0725P)2 + 0.2183P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.28 e Å3
3370 reflectionsΔρmin = 0.18 e Å3
219 parameters
Crystal data top
C20H14O4V = 1477.2 (8) Å3
Mr = 318.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.290 (3) ŵ = 0.1 mm1
b = 6.9781 (19) ÅT = 223 K
c = 25.779 (8) Å0.5 × 0.1 × 0.05 mm
β = 97.883 (1)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3370 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2773 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.997Rint = 0.033
11405 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.12Δρmax = 0.28 e Å3
3370 reflectionsΔρmin = 0.18 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.00036 (17)0.53181 (18)0.14389 (6)0.0275 (3)
H11.0620.53870.17730.033*
C21.01106 (17)0.67689 (19)0.10804 (6)0.0274 (3)
C30.91825 (18)0.66693 (19)0.05767 (6)0.0287 (3)
C40.81764 (18)0.51175 (19)0.04488 (5)0.0289 (3)
H40.75620.50420.01150.035*
C50.80647 (17)0.36535 (18)0.08134 (5)0.0259 (3)
C60.69108 (19)0.20757 (19)0.06595 (5)0.0291 (3)
C70.67888 (17)0.05220 (18)0.10459 (5)0.0255 (3)
C80.57670 (18)0.09998 (19)0.09083 (5)0.0282 (3)
H80.51490.1030.05740.034*
C90.56328 (18)0.25179 (18)0.12612 (6)0.0268 (3)
C100.46090 (19)0.4123 (2)0.11233 (6)0.0341 (3)
H100.40020.41920.07880.041*
C110.4501 (2)0.5567 (2)0.14754 (7)0.0384 (4)
H110.38140.66190.13810.046*
C120.5408 (2)0.5489 (2)0.19769 (6)0.0386 (4)
H120.53260.64920.22150.046*
C130.6411 (2)0.3969 (2)0.21228 (6)0.0344 (4)
H130.70130.39360.24590.041*
C140.65452 (17)0.24356 (18)0.17669 (6)0.0273 (3)
C150.75879 (18)0.08529 (19)0.19038 (5)0.0280 (3)
H150.81930.07940.2240.034*
C160.77246 (16)0.05988 (18)0.15515 (5)0.0241 (3)
C170.88638 (17)0.22181 (18)0.16997 (5)0.0260 (3)
C180.89773 (17)0.37413 (18)0.13063 (5)0.0247 (3)
C191.1882 (2)0.8638 (2)0.16855 (6)0.0360 (4)
H19A1.10960.86960.19320.054*
H19B1.24910.98280.16990.054*
H19C1.26240.75790.17770.054*
C200.8334 (2)0.8166 (2)0.02447 (6)0.0398 (4)
H20A0.85830.70510.04440.06*
H20B0.85380.9320.04350.06*
H20C0.71990.81270.01920.06*
O11.10487 (14)0.83614 (14)0.11692 (4)0.0362 (3)
O20.93439 (14)0.81632 (14)0.02532 (4)0.0378 (3)
O30.60656 (17)0.20730 (16)0.02332 (4)0.0491 (4)
O40.96858 (15)0.22784 (14)0.21323 (4)0.0401 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0273 (7)0.0287 (7)0.0248 (7)0.0028 (5)0.0018 (5)0.0021 (5)
C20.0268 (7)0.0268 (6)0.0283 (7)0.0069 (5)0.0027 (6)0.0035 (5)
C30.0311 (8)0.0287 (7)0.0263 (7)0.0044 (5)0.0042 (6)0.0040 (5)
C40.0322 (8)0.0306 (7)0.0223 (7)0.0061 (6)0.0021 (6)0.0023 (5)
C50.0276 (7)0.0244 (6)0.0247 (7)0.0025 (5)0.0004 (6)0.0008 (5)
C60.0352 (8)0.0265 (6)0.0234 (7)0.0061 (6)0.0035 (6)0.0017 (5)
C70.0291 (7)0.0238 (6)0.0229 (7)0.0019 (5)0.0007 (6)0.0005 (5)
C80.0317 (8)0.0269 (6)0.0244 (7)0.0037 (5)0.0022 (6)0.0007 (5)
C90.0275 (7)0.0237 (6)0.0295 (8)0.0003 (5)0.0047 (6)0.0002 (5)
C100.0355 (8)0.0301 (7)0.0364 (8)0.0049 (6)0.0033 (7)0.0009 (6)
C110.0388 (9)0.0271 (7)0.0505 (10)0.0064 (6)0.0107 (7)0.0001 (6)
C120.0453 (9)0.0287 (7)0.0442 (10)0.0007 (6)0.0143 (8)0.0117 (6)
C130.0396 (9)0.0323 (7)0.0315 (8)0.0033 (6)0.0057 (7)0.0074 (6)
C140.0293 (8)0.0244 (6)0.0286 (8)0.0033 (5)0.0059 (6)0.0034 (5)
C150.0317 (8)0.0279 (6)0.0231 (7)0.0023 (5)0.0004 (6)0.0021 (5)
C160.0267 (7)0.0217 (6)0.0232 (7)0.0017 (5)0.0008 (5)0.0005 (5)
C170.0289 (7)0.0253 (6)0.0222 (7)0.0010 (5)0.0026 (6)0.0009 (5)
C180.0261 (7)0.0239 (6)0.0234 (7)0.0006 (5)0.0009 (5)0.0009 (5)
C190.0372 (9)0.0353 (7)0.0345 (8)0.0117 (6)0.0013 (7)0.0091 (6)
C200.0465 (10)0.0386 (8)0.0318 (8)0.0136 (7)0.0034 (7)0.0106 (6)
O10.0425 (7)0.0324 (5)0.0320 (6)0.0160 (4)0.0008 (5)0.0007 (4)
O20.0448 (7)0.0347 (5)0.0314 (6)0.0160 (5)0.0034 (5)0.0090 (4)
O30.0679 (9)0.0436 (6)0.0288 (6)0.0257 (6)0.0190 (6)0.0104 (5)
O40.0514 (7)0.0337 (5)0.0294 (6)0.0079 (5)0.0149 (5)0.0029 (4)
Geometric parameters (Å, º) top
C1—C21.3818 (19)C11—C121.405 (2)
C1—C181.4041 (18)C11—H110.94
C1—H10.94C12—C131.368 (2)
C2—O11.3577 (16)C12—H120.94
C2—C31.417 (2)C13—C141.4237 (19)
C3—O21.3530 (16)C13—H130.94
C3—C41.3790 (19)C14—C151.4170 (19)
C4—C51.3998 (19)C15—C161.3757 (19)
C4—H40.94C15—H150.94
C5—C181.3881 (19)C16—C171.4885 (18)
C5—C61.4766 (18)C17—O41.2254 (16)
C6—O31.2198 (17)C17—C181.4810 (18)
C6—C71.4851 (18)C19—O11.4262 (18)
C7—C81.3743 (18)C19—H19A0.97
C7—C161.4233 (18)C19—H19B0.97
C8—C91.4107 (19)C19—H19C0.97
C8—H80.94C20—O21.4331 (18)
C9—C141.416 (2)C20—H20A0.97
C9—C101.4206 (19)C20—H20B0.97
C10—C111.368 (2)C20—H20C0.97
C10—H100.94
C2—C1—C18120.24 (12)C13—C12—H12119.6
C2—C1—H1119.9C11—C12—H12119.6
C18—C1—H1119.9C12—C13—C14120.25 (14)
O1—C2—C1125.09 (13)C12—C13—H13119.9
O1—C2—C3114.90 (12)C14—C13—H13119.9
C1—C2—C3120.01 (12)C9—C14—C15119.45 (12)
O2—C3—C4124.42 (13)C9—C14—C13118.93 (13)
O2—C3—C2116.09 (12)C15—C14—C13121.61 (13)
C4—C3—C2119.48 (12)C16—C15—C14120.81 (13)
C3—C4—C5120.40 (13)C16—C15—H15119.6
C3—C4—H4119.8C14—C15—H15119.6
C5—C4—H4119.8C15—C16—C7119.53 (12)
C18—C5—C4120.29 (12)C15—C16—C17119.76 (12)
C18—C5—C6122.03 (12)C7—C16—C17120.70 (12)
C4—C5—C6117.64 (12)O4—C17—C18121.27 (12)
O3—C6—C5120.94 (12)O4—C17—C16120.91 (12)
O3—C6—C7121.31 (12)C18—C17—C16117.82 (12)
C5—C6—C7117.73 (12)C5—C18—C1119.56 (12)
C8—C7—C16120.32 (12)C5—C18—C17121.15 (12)
C8—C7—C6119.16 (12)C1—C18—C17119.27 (12)
C16—C7—C6120.53 (12)O1—C19—H19A109.5
C7—C8—C9120.93 (13)O1—C19—H19B109.5
C7—C8—H8119.5H19A—C19—H19B109.5
C9—C8—H8119.5O1—C19—H19C109.5
C8—C9—C14118.95 (12)H19A—C19—H19C109.5
C8—C9—C10121.86 (13)H19B—C19—H19C109.5
C14—C9—C10119.19 (13)O2—C20—H20A109.5
C11—C10—C9120.42 (14)O2—C20—H20B109.5
C11—C10—H10119.8H20A—C20—H20B109.5
C9—C10—H10119.8O2—C20—H20C109.5
C10—C11—C12120.41 (14)H20A—C20—H20C109.5
C10—C11—H11119.8H20B—C20—H20C109.5
C12—C11—H11119.8C2—O1—C19117.45 (11)
C13—C12—C11120.79 (13)C3—O2—C20117.27 (11)
C18—C1—C2—O1179.31 (13)C10—C9—C14—C130.1 (2)
C18—C1—C2—C30.0 (2)C12—C13—C14—C90.3 (2)
O1—C2—C3—O20.27 (19)C12—C13—C14—C15179.20 (14)
C1—C2—C3—O2179.11 (13)C9—C14—C15—C160.1 (2)
O1—C2—C3—C4179.36 (13)C13—C14—C15—C16178.82 (13)
C1—C2—C3—C40.0 (2)C14—C15—C16—C70.9 (2)
O2—C3—C4—C5178.75 (14)C14—C15—C16—C17178.27 (12)
C2—C3—C4—C50.3 (2)C8—C7—C16—C150.6 (2)
C3—C4—C5—C180.6 (2)C6—C7—C16—C15179.76 (13)
C3—C4—C5—C6177.37 (13)C8—C7—C16—C17178.55 (13)
C18—C5—C6—O3176.55 (15)C6—C7—C16—C171.1 (2)
C4—C5—C6—O31.3 (2)C15—C16—C17—O40.0 (2)
C18—C5—C6—C72.0 (2)C7—C16—C17—O4179.14 (13)
C4—C5—C6—C7179.93 (13)C15—C16—C17—C18179.63 (12)
O3—C6—C7—C83.6 (2)C7—C16—C17—C180.5 (2)
C5—C6—C7—C8177.82 (13)C4—C5—C18—C10.6 (2)
O3—C6—C7—C16176.79 (14)C6—C5—C18—C1177.27 (13)
C5—C6—C7—C161.8 (2)C4—C5—C18—C17179.34 (13)
C16—C7—C8—C90.5 (2)C6—C5—C18—C171.5 (2)
C6—C7—C8—C9179.12 (13)C2—C1—C18—C50.3 (2)
C7—C8—C9—C141.3 (2)C2—C1—C18—C17179.09 (13)
C7—C8—C9—C10178.72 (13)O4—C17—C18—C5178.92 (13)
C8—C9—C10—C11179.71 (14)C16—C17—C18—C50.7 (2)
C14—C9—C10—C110.3 (2)O4—C17—C18—C12.3 (2)
C9—C10—C11—C120.4 (2)C16—C17—C18—C1178.11 (12)
C10—C11—C12—C130.2 (2)C1—C2—O1—C195.6 (2)
C11—C12—C13—C140.1 (2)C3—C2—O1—C19173.78 (13)
C8—C9—C14—C151.0 (2)C4—C3—O2—C203.3 (2)
C10—C9—C14—C15179.02 (13)C2—C3—O2—C20175.73 (13)
C8—C9—C14—C13179.95 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.942.303.210 (2)162
C15—H15···O4ii0.942.603.383 (2)141
C20—H20B···O1iii0.972.553.486 (2)162
C20—H20B···O2iii0.972.483.206 (2)131
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC20H14O4
Mr318.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)8.290 (3), 6.9781 (19), 25.779 (8)
β (°) 97.883 (1)
V3)1477.2 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.1
Crystal size (mm)0.5 × 0.1 × 0.05
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.988, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
11405, 3370, 2773
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.12
No. of reflections3370
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: CrystalClear (Rigaku, 2001), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.942.303.210 (2)162
C15—H15···O4ii0.942.603.383 (2)141
C20—H20B···O1iii0.972.553.486 (2)162
C20—H20B···O2iii0.972.483.206 (2)131
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1/2, z+1/2; (iii) x+2, y+2, z.
 

Acknowledgements

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structural analysis. This work was supported by a Grant-in-Aid (No. 20550128) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKitamura, C., Akamatsu, N., Yoneda, A. & Kawase, T. (2008). Acta Cryst. E64, o1802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcOmie, J. F. W. & Perry, D. H. (1973). Synthesis, pp. 416–417.  CrossRef Google Scholar
First citationReichwagen, J., Hopf, H., Del Guerzo, A., Belin, C., Bouas-Laurent, H. & Desvergne, J.-P. (2005). Org. Lett. 7, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVets, N., Smet, M. & Dehaen, W. (2004). Tetrahedron Lett. 45, 7287–7289.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds