metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis[N-(2-furoyl)-N′,N′-di­phenyl­thio­ureato-κ2O,S]nickel(II)

aDepartamento de Química Inorgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil, cLaboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, Habana 10400, Cuba, and dInstituto de Ciencia y Tecnología de Materiales, Universidad de la Habana, Habana 10400, Cuba
*Correspondence e-mail: hperez@fq.uh.cu

(Received 21 January 2009; accepted 23 January 2009; online 31 January 2009)

In the title compound, [Ni(C18H13N2O2S)2], the NiII atom is coordinated by the S and O atoms of two N-furoyl-N′,N′-diphenyl­thio­ureate ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are cis to each other.

Related literature

For general background, see: Arslan et al. (2006[Arslan, H., Flörke, U., Külcü, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429-440.]). For related structures, see: Jia et al. (2007[Jia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059-2063.]); Pérez et al. (2008[Pérez, H., Corrêa, R. S., Duque, J., Plutín, A. M. & O'Reilly, B. (2008). Acta Cryst. E64, m916.]). For the synthesis of the ligand, see: Hernández et al. (2003[Hernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271-284.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C18H13N2O2S)2]

  • Mr = 701.46

  • Triclinic, [P \overline 1]

  • a = 10.0458 (2) Å

  • b = 11.0030 (3) Å

  • c = 15.9718 (3) Å

  • α = 72.755 (2)°

  • β = 88.792 (2)°

  • γ = 74.874 (1)°

  • V = 1624.61 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 294 K

  • 0.15 × 0.09 × 0.06 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.955, Tmax = 0.980

  • 12907 measured reflections

  • 7027 independent reflections

  • 5083 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.145

  • S = 1.22

  • 7027 reflections

  • 424 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O3 1.870 (2)
Ni1—O1 1.872 (2)
Ni1—S1 2.1412 (9)
Ni1—S2 2.1452 (9)
O3—Ni1—O1 84.21 (9)
O3—Ni1—S1 176.26 (8)
O1—Ni1—S1 95.90 (7)
O3—Ni1—S2 95.82 (7)
O1—Ni1—S2 176.87 (8)
S1—Ni1—S2 84.28 (3)

Data collection: COLLECT (Enraf–Nonius, 2000[Enraf-Nonius (2000). COLLECT. Enraf-Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

N-Acyl-N',N'-disubstituted thioureas are well known as chelating agents. Over recent years, many transition metal complexes with N-benzoyl- and N-furoyl-N',N'-disubstituted thioureas have been reported (Jia et al., 2007). During the complex formation, the ligand is deprotonated, which results in a neutral complex with a six-membered ring chelating metal ion. In this paper, we report the crystal structure of the title compound.

In the structure of complex, the two furoylthiourea ligands have cis arrangement when bonded to the central NiII ion as shown in Fig. 1. The complex coordination geometry is a slightly distorted square-planar as reflected by the angles O3—Ni1—S1 [176.26 (8)°] and O1—Ni1—S2 [176.87 (8)°].

Selected geometric parameters are listed in Table 1. The Ni—S and Ni—O bond lengths lie within the range of those found in the related structures (Pérez et al., 2008). The lengths of C—O, C—S and C—N bonds in the chelate ring are between characteristic single and double bond lengths (Arslan et al., 2006), which are shorter than single and longer than double bonds. Fig. 2 shows the arrangement of the complex molecules in the unit cell.

Related literature top

For general background, see: Arslan et al. (2006). For related structures, see: Jia et al. (2007); Pérez et al. (2008). For the synthesis of the ligand, see: Hernández et al. (2003).

Experimental top

N-Furoyl-N',N'-diphenylthiourea ligand was synthesized according to a procedure described by Hernández et al. (2003), by converting furoyl chloride into furoyl isothiocyanate and then condensing with an appropriate amine. To an ethanol solution (30 ml) containing the ligand (0.64 g, 2 mmol) was added an ethanol solution of Ni(CH3COO)2.4H2O (0.25 g, 1 mmol). The solution was stirred at room temperature for 2 h, and at once a solution of NaOH (1 N) was added to adjust pH to the neutral value. The mixture was filtered and the filtrate was evaporated under reduced pressure to give a red solid, which was washed with acetone. Single crystals were obtained by slow evaporation of a chloroform/N,N-diphenylformamide solution (1:1, v/v) of the complex.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Enraf–Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the unit cell of the title complex.
cis-Bis[N-(2-furoyl)-N',N'-diphenylthioureato- κ2O,S]nickel(II) top
Crystal data top
[Ni(C18H13N2O2S)2]Z = 2
Mr = 701.46F(000) = 724
Triclinic, P1Dx = 1.434 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.0458 (2) ÅCell parameters from 83255 reflections
b = 11.0030 (3) Åθ = 2.9–27.1°
c = 15.9718 (3) ŵ = 0.77 mm1
α = 72.755 (2)°T = 294 K
β = 88.792 (2)°Prism, red
γ = 74.874 (1)°0.15 × 0.09 × 0.06 mm
V = 1624.61 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
5083 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.053
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 27.1°, θmin = 3.1°
Tmin = 0.955, Tmax = 0.980h = 1212
12907 measured reflectionsk = 1314
7027 independent reflectionsl = 1720
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2693P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.33 e Å3
7027 reflectionsΔρmin = 0.46 e Å3
424 parameters
Crystal data top
[Ni(C18H13N2O2S)2]γ = 74.874 (1)°
Mr = 701.46V = 1624.61 (7) Å3
Triclinic, P1Z = 2
a = 10.0458 (2) ÅMo Kα radiation
b = 11.0030 (3) ŵ = 0.77 mm1
c = 15.9718 (3) ÅT = 294 K
α = 72.755 (2)°0.15 × 0.09 × 0.06 mm
β = 88.792 (2)°
Data collection top
Nonius KappaCCD
diffractometer
7027 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
5083 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.980Rint = 0.053
12907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.22Δρmax = 0.33 e Å3
7027 reflectionsΔρmin = 0.46 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.10992 (4)0.16148 (4)0.22008 (2)0.04396 (16)
S20.17245 (9)0.12133 (9)0.09958 (6)0.0542 (3)
S10.27714 (9)0.00834 (9)0.27898 (6)0.0562 (3)
C250.1818 (3)0.1120 (3)0.0847 (2)0.0468 (8)
C30.0498 (3)0.2104 (3)0.4681 (2)0.0461 (8)
O20.0374 (2)0.3346 (2)0.43990 (16)0.0594 (6)
C50.0320 (4)0.2626 (5)0.5856 (3)0.0802 (13)
H50.05040.25820.64360.096*
O10.0615 (2)0.2029 (2)0.32411 (14)0.0539 (6)
C160.4337 (4)0.2623 (4)0.7121 (2)0.0608 (10)
H160.44470.29310.77310.073*
C90.5753 (5)0.4263 (4)0.3721 (3)0.0758 (12)
H90.5680.51090.37780.091*
O30.0437 (2)0.3025 (2)0.16983 (14)0.0551 (6)
N40.0672 (3)0.2042 (3)0.06320 (16)0.0485 (7)
O40.2840 (2)0.4849 (2)0.14960 (16)0.0649 (7)
C150.5424 (4)0.2347 (4)0.6641 (2)0.0592 (9)
H150.62650.24590.69260.071*
N20.3911 (3)0.1353 (3)0.43740 (16)0.0433 (6)
N10.2152 (3)0.0424 (3)0.43601 (16)0.0427 (6)
C310.0362 (3)0.2842 (3)0.1339 (2)0.0459 (8)
C170.3089 (4)0.2447 (4)0.6709 (2)0.0593 (10)
H170.23510.26280.70390.071*
C220.3081 (4)0.5271 (4)0.0059 (3)0.0696 (11)
H220.29110.52580.05130.084*
C210.2258 (3)0.4548 (3)0.0779 (2)0.0467 (8)
C130.4024 (3)0.1739 (3)0.5320 (2)0.0420 (7)
C70.4894 (3)0.2189 (3)0.3976 (2)0.0456 (8)
C120.5971 (4)0.1767 (4)0.3554 (2)0.0641 (10)
H120.60450.09210.34950.077*
C180.2929 (3)0.2002 (3)0.5805 (2)0.0491 (8)
H180.20820.1880.55240.059*
N30.0573 (3)0.3195 (3)0.02013 (16)0.0476 (7)
C10.1123 (3)0.1489 (3)0.4017 (2)0.0424 (7)
C260.3131 (4)0.1250 (4)0.0810 (2)0.0650 (10)
H260.32930.19150.06110.078*
C360.1497 (4)0.2426 (4)0.1455 (2)0.0574 (9)
H360.16170.16440.10750.069*
C140.5278 (3)0.1902 (3)0.5730 (2)0.0521 (9)
H140.60160.17160.54020.063*
C200.0522 (3)0.2238 (3)0.0169 (2)0.0439 (8)
C40.0562 (4)0.1639 (4)0.5560 (2)0.0667 (11)
H40.10890.0820.59070.08*
C190.0975 (3)0.3501 (3)0.0924 (2)0.0463 (8)
C320.0178 (4)0.3994 (4)0.1894 (2)0.0598 (10)
H320.05950.42730.18160.072*
C270.4219 (4)0.0402 (5)0.1067 (3)0.0723 (12)
H270.51060.05040.10440.087*
C350.2467 (4)0.3177 (4)0.2142 (3)0.0692 (11)
H350.32350.28950.22290.083*
C230.4244 (4)0.6049 (4)0.0329 (3)0.0777 (13)
H230.49940.66520.00280.093*
C80.4766 (4)0.3430 (4)0.4059 (2)0.0582 (9)
H80.40280.37070.43380.07*
C110.6944 (4)0.2612 (5)0.3217 (3)0.0796 (13)
H110.76760.23350.29290.095*
C300.1591 (4)0.0128 (4)0.1135 (3)0.0716 (12)
H300.07050.00240.1160.086*
C100.6831 (5)0.3862 (5)0.3306 (3)0.0824 (15)
H100.7490.44330.30830.099*
C20.2900 (3)0.0298 (3)0.3898 (2)0.0406 (7)
C330.1163 (5)0.4739 (4)0.2575 (2)0.0729 (12)
H330.10510.55240.29570.087*
C60.0839 (4)0.3632 (4)0.5149 (3)0.0714 (12)
H60.14410.44280.5160.086*
C280.4000 (5)0.0574 (4)0.1351 (3)0.0759 (12)
H280.47350.11460.1520.091*
C240.4066 (4)0.5758 (4)0.1190 (3)0.0731 (12)
H240.46960.61270.15410.088*
C340.2292 (5)0.4322 (4)0.2686 (3)0.0727 (12)
H340.29510.48310.31410.087*
C290.2695 (5)0.0716 (4)0.1389 (3)0.0892 (15)
H290.25450.13870.15870.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0427 (3)0.0473 (3)0.0365 (3)0.00044 (19)0.00223 (18)0.01466 (19)
S20.0514 (5)0.0615 (6)0.0397 (5)0.0050 (4)0.0030 (4)0.0179 (4)
S10.0577 (6)0.0587 (6)0.0390 (5)0.0128 (4)0.0016 (4)0.0198 (4)
C250.0448 (19)0.054 (2)0.0376 (17)0.0041 (16)0.0069 (14)0.0156 (15)
C30.0386 (18)0.050 (2)0.050 (2)0.0001 (16)0.0030 (15)0.0261 (16)
O20.0571 (15)0.0555 (15)0.0630 (16)0.0006 (12)0.0088 (12)0.0282 (12)
C50.074 (3)0.107 (4)0.062 (3)0.003 (3)0.009 (2)0.053 (3)
O10.0560 (14)0.0540 (14)0.0398 (13)0.0092 (11)0.0010 (11)0.0170 (11)
C160.085 (3)0.051 (2)0.0396 (19)0.005 (2)0.001 (2)0.0148 (16)
C90.092 (3)0.055 (3)0.072 (3)0.012 (2)0.007 (2)0.033 (2)
O30.0536 (14)0.0612 (15)0.0385 (13)0.0073 (12)0.0005 (11)0.0164 (11)
N40.0485 (16)0.0541 (17)0.0400 (15)0.0026 (14)0.0014 (12)0.0197 (13)
O40.0590 (16)0.0630 (17)0.0567 (15)0.0087 (13)0.0086 (12)0.0164 (13)
C150.063 (2)0.059 (2)0.054 (2)0.0102 (19)0.0128 (19)0.0181 (18)
N20.0391 (14)0.0483 (16)0.0365 (14)0.0020 (12)0.0014 (11)0.0161 (12)
N10.0402 (15)0.0449 (16)0.0402 (15)0.0032 (13)0.0032 (12)0.0157 (12)
C310.0480 (19)0.048 (2)0.0372 (17)0.0029 (16)0.0041 (15)0.0148 (15)
C170.063 (2)0.058 (2)0.048 (2)0.0072 (19)0.0146 (18)0.0113 (17)
C220.068 (3)0.064 (3)0.065 (3)0.009 (2)0.016 (2)0.025 (2)
C210.0481 (19)0.0432 (19)0.0446 (19)0.0021 (16)0.0011 (15)0.0156 (15)
C130.0431 (18)0.0412 (18)0.0402 (17)0.0040 (15)0.0019 (14)0.0164 (14)
C70.0408 (18)0.050 (2)0.0373 (17)0.0059 (15)0.0032 (14)0.0159 (15)
C120.052 (2)0.076 (3)0.060 (2)0.005 (2)0.0154 (18)0.026 (2)
C180.0429 (19)0.056 (2)0.0444 (19)0.0071 (16)0.0036 (15)0.0140 (16)
N30.0529 (17)0.0500 (17)0.0378 (15)0.0060 (14)0.0036 (13)0.0170 (13)
C10.0399 (18)0.0474 (19)0.0410 (18)0.0105 (16)0.0067 (14)0.0161 (15)
C260.059 (2)0.086 (3)0.060 (2)0.020 (2)0.0100 (19)0.036 (2)
C360.057 (2)0.056 (2)0.056 (2)0.0100 (19)0.0011 (18)0.0170 (18)
C140.049 (2)0.056 (2)0.050 (2)0.0113 (17)0.0010 (16)0.0159 (17)
C200.0463 (19)0.048 (2)0.0381 (17)0.0114 (16)0.0077 (14)0.0151 (15)
C40.062 (2)0.085 (3)0.046 (2)0.007 (2)0.0003 (18)0.030 (2)
C190.0476 (19)0.0430 (19)0.0439 (19)0.0068 (16)0.0017 (15)0.0110 (15)
C320.066 (2)0.056 (2)0.057 (2)0.015 (2)0.0057 (19)0.0177 (19)
C270.049 (2)0.104 (4)0.067 (3)0.013 (2)0.0125 (19)0.037 (3)
C350.055 (2)0.075 (3)0.078 (3)0.003 (2)0.010 (2)0.034 (2)
C230.061 (3)0.059 (3)0.097 (4)0.016 (2)0.026 (2)0.025 (2)
C80.065 (2)0.054 (2)0.053 (2)0.0037 (19)0.0029 (18)0.0217 (18)
C110.054 (2)0.107 (4)0.068 (3)0.000 (3)0.017 (2)0.031 (3)
C300.063 (3)0.069 (3)0.100 (3)0.022 (2)0.023 (2)0.047 (2)
C100.064 (3)0.108 (4)0.054 (3)0.024 (3)0.004 (2)0.035 (3)
C20.0364 (17)0.0440 (19)0.0410 (17)0.0074 (15)0.0015 (14)0.0149 (15)
C330.095 (3)0.053 (2)0.052 (2)0.003 (2)0.004 (2)0.0043 (19)
C60.061 (2)0.077 (3)0.083 (3)0.000 (2)0.012 (2)0.052 (3)
C280.070 (3)0.073 (3)0.076 (3)0.000 (2)0.022 (2)0.027 (2)
C240.057 (3)0.059 (3)0.090 (3)0.010 (2)0.007 (2)0.025 (2)
C340.074 (3)0.070 (3)0.060 (3)0.012 (2)0.016 (2)0.026 (2)
C290.084 (3)0.068 (3)0.135 (4)0.021 (3)0.037 (3)0.061 (3)
Geometric parameters (Å, º) top
Ni1—O31.870 (2)C22—C231.400 (5)
Ni1—O11.872 (2)C22—H220.93
Ni1—S12.1412 (9)C21—C191.456 (4)
Ni1—S22.1452 (9)C13—C181.376 (4)
S2—C201.717 (3)C13—C141.376 (4)
S1—C21.718 (3)C7—C81.372 (5)
C25—C261.368 (5)C7—C121.374 (5)
C25—C301.373 (5)C12—C111.383 (5)
C25—N41.433 (4)C12—H120.93
C3—C41.341 (5)C18—H180.93
C3—O21.366 (4)N3—C201.322 (4)
C3—C11.468 (4)N3—C191.323 (4)
O2—C61.370 (4)C26—C271.381 (5)
C5—C61.325 (6)C26—H260.93
C5—C41.405 (5)C36—C351.388 (5)
C5—H50.93C36—H360.93
O1—C11.257 (4)C14—H140.93
C16—C151.368 (5)C4—H40.93
C16—C171.369 (5)C32—C331.388 (5)
C16—H160.93C32—H320.93
C9—C101.361 (6)C27—C281.350 (6)
C9—C81.381 (5)C27—H270.93
C9—H90.93C35—C341.354 (6)
O3—C191.261 (4)C35—H350.93
N4—C201.357 (4)C23—C241.321 (6)
N4—C311.452 (4)C23—H230.93
O4—C241.360 (4)C8—H80.93
O4—C211.364 (4)C11—C101.374 (6)
C15—C141.387 (5)C11—H110.93
C15—H150.93C30—C291.387 (5)
N2—C21.360 (4)C30—H300.93
N2—C71.440 (4)C10—H100.93
N2—C131.441 (4)C33—C341.363 (6)
N1—C21.323 (4)C33—H330.93
N1—C11.324 (4)C6—H60.93
C31—C361.369 (5)C28—C291.365 (6)
C31—C321.370 (5)C28—H280.93
C17—C181.379 (4)C24—H240.93
C17—H170.93C34—H340.93
C22—C211.339 (5)C29—H290.93
O3—Ni1—O184.21 (9)N1—C1—C3112.0 (3)
O3—Ni1—S1176.26 (8)C25—C26—C27120.5 (4)
O1—Ni1—S195.90 (7)C25—C26—H26119.7
O3—Ni1—S295.82 (7)C27—C26—H26119.7
O1—Ni1—S2176.87 (8)C31—C36—C35119.7 (4)
S1—Ni1—S284.28 (3)C31—C36—H36120.2
C20—S2—Ni1108.55 (11)C35—C36—H36120.2
C2—S1—Ni1108.64 (11)C13—C14—C15119.0 (3)
C26—C25—C30119.3 (3)C13—C14—H14120.5
C26—C25—N4120.9 (3)C15—C14—H14120.5
C30—C25—N4119.7 (3)N3—C20—N4114.0 (3)
C4—C3—O2110.4 (3)N3—C20—S2128.9 (2)
C4—C3—C1131.4 (3)N4—C20—S2117.1 (2)
O2—C3—C1118.1 (3)C3—C4—C5106.7 (4)
C3—O2—C6105.1 (3)C3—C4—H4126.6
C6—C5—C4106.7 (4)C5—C4—H4126.6
C6—C5—H5126.7O3—C19—N3130.4 (3)
C4—C5—H5126.7O3—C19—C21116.7 (3)
C1—O1—Ni1131.4 (2)N3—C19—C21112.8 (3)
C15—C16—C17120.4 (3)C31—C32—C33119.1 (4)
C15—C16—H16119.8C31—C32—H32120.4
C17—C16—H16119.8C33—C32—H32120.4
C10—C9—C8120.9 (4)C28—C27—C26120.3 (4)
C10—C9—H9119.6C28—C27—H27119.8
C8—C9—H9119.6C26—C27—H27119.8
C19—O3—Ni1131.6 (2)C34—C35—C36119.7 (4)
C20—N4—C25124.4 (3)C34—C35—H35120.1
C20—N4—C31118.9 (3)C36—C35—H35120.1
C25—N4—C31116.6 (2)C24—C23—C22106.4 (4)
C24—O4—C21105.7 (3)C24—C23—H23126.8
C16—C15—C14120.3 (3)C22—C23—H23126.8
C16—C15—H15119.8C7—C8—C9118.9 (4)
C14—C15—H15119.8C7—C8—H8120.5
C2—N2—C7122.7 (2)C9—C8—H8120.5
C2—N2—C13121.6 (2)C10—C11—C12120.1 (4)
C7—N2—C13115.6 (2)C10—C11—H11120
C2—N1—C1123.9 (3)C12—C11—H11120
C36—C31—C32120.5 (3)C25—C30—C29119.4 (4)
C36—C31—N4119.8 (3)C25—C30—H30120.3
C32—C31—N4119.7 (3)C29—C30—H30120.3
C16—C17—C18119.9 (3)C9—C10—C11119.9 (4)
C16—C17—H17120.1C9—C10—H10120
C18—C17—H17120.1C11—C10—H10120
C21—C22—C23107.3 (4)N1—C2—N2114.9 (3)
C21—C22—H22126.4N1—C2—S1129.1 (2)
C23—C22—H22126.4N2—C2—S1116.0 (2)
C22—C21—O4109.6 (3)C34—C33—C32120.1 (4)
C22—C21—C19132.7 (3)C34—C33—H33120
O4—C21—C19117.7 (3)C32—C33—H33120
C18—C13—C14120.5 (3)C5—C6—O2111.1 (3)
C18—C13—N2121.0 (3)C5—C6—H6124.5
C14—C13—N2118.4 (3)O2—C6—H6124.5
C8—C7—C12120.9 (3)C27—C28—C29119.7 (4)
C8—C7—N2118.7 (3)C27—C28—H28120.1
C12—C7—N2120.3 (3)C29—C28—H28120.1
C7—C12—C11119.3 (4)C23—C24—O4111.1 (4)
C7—C12—H12120.3C23—C24—H24124.5
C11—C12—H12120.3O4—C24—H24124.5
C13—C18—C17119.9 (3)C35—C34—C33120.9 (4)
C13—C18—H18120.1C35—C34—H34119.6
C17—C18—H18120.1C33—C34—H34119.6
C20—N3—C19124.5 (3)C28—C29—C30120.7 (4)
O1—C1—N1131.0 (3)C28—C29—H29119.7
O1—C1—C3117.0 (3)C30—C29—H29119.7
C4—C3—O2—C60.5 (4)C25—N4—C20—S25.4 (4)
C1—C3—O2—C6177.2 (3)C31—N4—C20—S2176.9 (2)
C26—C25—N4—C2062.4 (5)Ni1—S2—C20—N34.5 (3)
C30—C25—N4—C20120.9 (4)Ni1—S2—C20—N4173.9 (2)
C26—C25—N4—C31115.4 (4)O2—C3—C4—C50.4 (5)
C30—C25—N4—C3161.4 (4)C1—C3—C4—C5175.7 (3)
C17—C16—C15—C140.8 (6)C6—C5—C4—C31.3 (5)
C20—N4—C31—C3689.2 (4)Ni1—O3—C19—N34.2 (6)
C25—N4—C31—C3693.0 (4)Ni1—O3—C19—C21174.8 (2)
C20—N4—C31—C3292.1 (4)C20—N3—C19—O32.3 (6)
C25—N4—C31—C3285.8 (4)C20—N3—C19—C21176.7 (3)
C15—C16—C17—C180.6 (6)C22—C21—C19—O3179.0 (4)
C23—C22—C21—O40.9 (5)O4—C21—C19—O35.6 (5)
C23—C22—C21—C19174.7 (4)C22—C21—C19—N31.8 (6)
C24—O4—C21—C221.5 (4)O4—C21—C19—N3173.5 (3)
C24—O4—C21—C19174.8 (3)C36—C31—C32—C330.3 (5)
C2—N2—C13—C1855.4 (4)N4—C31—C32—C33179.0 (3)
C7—N2—C13—C18122.0 (3)C25—C26—C27—C280.5 (6)
C2—N2—C13—C14127.7 (3)C31—C36—C35—C340.8 (6)
C7—N2—C13—C1455.0 (4)C21—C22—C23—C240.0 (5)
C2—N2—C7—C8106.7 (4)C12—C7—C8—C90.9 (5)
C13—N2—C7—C870.7 (4)N2—C7—C8—C9176.3 (3)
C2—N2—C7—C1276.1 (4)C10—C9—C8—C70.5 (6)
C13—N2—C7—C12106.6 (4)C7—C12—C11—C100.1 (6)
C8—C7—C12—C110.6 (5)C26—C25—C30—C290.4 (6)
N2—C7—C12—C11176.6 (3)N4—C25—C30—C29176.4 (4)
C14—C13—C18—C170.8 (5)C8—C9—C10—C110.2 (6)
N2—C13—C18—C17176.1 (3)C12—C11—C10—C90.5 (7)
C16—C17—C18—C130.2 (5)C1—N1—C2—N2180.0 (3)
C2—N1—C1—O11.4 (6)C1—N1—C2—S10.3 (5)
C2—N1—C1—C3178.9 (3)C7—N2—C2—N1175.0 (3)
C4—C3—C1—O1162.4 (4)C13—N2—C2—N17.8 (4)
O2—C3—C1—O113.5 (4)C7—N2—C2—S14.8 (4)
C4—C3—C1—N117.3 (5)C13—N2—C2—S1172.4 (2)
O2—C3—C1—N1166.8 (3)Ni1—S1—C2—N11.0 (3)
C30—C25—C26—C270.5 (6)Ni1—S1—C2—N2179.3 (2)
N4—C25—C26—C27176.3 (3)C31—C32—C33—C340.1 (6)
C32—C31—C36—C350.2 (5)C4—C5—C6—O21.6 (5)
N4—C31—C36—C35178.6 (3)C3—O2—C6—C51.4 (4)
C18—C13—C14—C150.6 (5)C26—C27—C28—C290.4 (7)
N2—C13—C14—C15176.3 (3)C22—C23—C24—O41.0 (5)
C16—C15—C14—C130.2 (5)C21—O4—C24—C231.6 (5)
C19—N3—C20—N4175.3 (3)C36—C35—C34—C331.0 (6)
C19—N3—C20—S23.1 (5)C32—C33—C34—C350.6 (6)
C25—N4—C20—N3176.0 (3)C27—C28—C29—C300.2 (7)
C31—N4—C20—N31.7 (4)C25—C30—C29—C280.3 (7)

Experimental details

Crystal data
Chemical formula[Ni(C18H13N2O2S)2]
Mr701.46
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.0458 (2), 11.0030 (3), 15.9718 (3)
α, β, γ (°)72.755 (2), 88.792 (2), 74.874 (1)
V3)1624.61 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.15 × 0.09 × 0.06
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.955, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
12907, 7027, 5083
Rint0.053
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.145, 1.22
No. of reflections7027
No. of parameters424
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.46

Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O31.870 (2)Ni1—S12.1412 (9)
Ni1—O11.872 (2)Ni1—S22.1452 (9)
O3—Ni1—O184.21 (9)O3—Ni1—S295.82 (7)
O3—Ni1—S1176.26 (8)O1—Ni1—S2176.87 (8)
O1—Ni1—S195.90 (7)S1—Ni1—S284.28 (3)
 

Acknowledgements

The authors thank the Crystallography Group, São Carlos Physics Institute, USP, Brazil, for allowing the X-ray data collection. The authors acknowledge financial support from Brazilian agencies CAPES (Project No. 018/05) and CNPq (Project No. 134576/2007-1).

References

First citationArslan, H., Flörke, U., Külcü, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440.  CAS Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHernández, W., Spodine, E., Muñoz, J. C., Beyer, L., Schröder, U., Ferreira, J. & Pavani, M. (2003). Bioinorg. Chem. Appl. 1, 271–284.  Google Scholar
First citationJia, D.-X., Zhu, A.-M., Deng, J. & Zhang, Y. (2007). Z. Anorg. Allg. Chem. 633, 2059–2063.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Corrêa, R. S., Duque, J., Plutín, A. M. & O'Reilly, B. (2008). Acta Cryst. E64, m916.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds