metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Poly[bis­­(μ-hemi­hydrogen 2-phenyl­quinoline-4-carboxyl­ato-κ2N,O)silver(I)]

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan, 250013, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, People's Republic of China, and cDepartment of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 21 October 2008; accepted 10 January 2009; online 23 January 2009)

In the title compound, [Ag(C16H10.5NO2)2], the AgI cation (site symmetry 2) is coordinated by two N atoms in a near-linear AgN2 arrangement. Two carboxyl­ate O atoms from two additional 2-phenyl­quinoline-4-carboxyl­ate ligands form long Ag—O bonds [2.6585 (17) Å], resulting in a distorted square-planar arrangement. The bridging ligands result in infinite corrugated sheets propagating in (010). An O—H⋯O hydrogen bond, disordered about a twofold axis, completes the structure.

Related literature

For the related coordination polymers containing MnII, CoII and CuII, see: Xiao et al. (2005[Xiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158-m159.]); Xie et al. (2005[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273-m2275.]) and Xie et al. (2006[Xie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397-m399.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [Ag(C16H10.5NO2)2]

  • Mr = 605.38

  • Monoclinic, C 2/c

  • a = 7.2163 (6) Å

  • b = 20.5060 (17) Å

  • c = 16.5632 (12) Å

  • β = 97.585 (3)°

  • V = 2429.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.877, Tmax = 1.00 (expected range = 0.769–0.877)

  • 9257 measured reflections

  • 2791 independent reflections

  • 2550 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.067

  • S = 1.10

  • 2791 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.2413 (15)
N1—Ag1—N1i 177.38 (8)
Symmetry code: (i) [-x+1, y, -z-{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O1ii 0.82 1.68 2.470 (3) 162
Symmetry code: (ii) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the related coordination polymers containing MnII, CoII and CuII, see: Xiao et al. (2005); Xie et al. (2005) and Xie et al. (2006), respectively.

Experimental top

A mixture of silver nitrate (0.5 mmol) and 2-phenyl-4-quinolinecarboxylic acid (0.5 mmol) in H2O (8 ml) and ethanol (8 ml) was sealed in a 25 ml Teflon-lined stainless steel autoclave and kept at 413 K for three days. Orange prisms of (I) were obtained after cooling to room temperature with a yield of 27%. Anal. Calc. for C32H21AgN2O4: C 63.43, H 3.47, N 4.63%; Found: C 63.41, H 3.32, N 4.59%.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93 Å, O—H = 0.82Å) and refined as riding with and Uiso(H) = 1.2Ueq(carruer).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), expanded to show the Ag—N bonds, showing 30% probability displacement ellipsoids. Symmetry code: I: 1–x, y, –z–1/2.
[Figure 2] Fig. 2. Part of a polymeric sheet in (I).
Poly[bis(µ-hemihydrogen 2-phenylquinoline-4-carboxylato-κ2N,O)silver(I)] top
Crystal data top
[Ag(C16H10.5NO2)2]F(000) = 1224
Mr = 605.38Dx = 1.655 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3290 reflections
a = 7.2163 (6) Åθ = 2.3–27.5°
b = 20.5060 (17) ŵ = 0.87 mm1
c = 16.5632 (12) ÅT = 293 K
β = 97.585 (3)°Prism, orange
V = 2429.5 (3) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2791 independent reflections
Radiation source: fine-focus sealed tube2550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.877, Tmax = 1.00k = 2526
9257 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.551P]
where P = (Fo2 + 2Fc2)/3
2791 reflections(Δ/σ)max < 0.001
177 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ag(C16H10.5NO2)2]V = 2429.5 (3) Å3
Mr = 605.38Z = 4
Monoclinic, C2/cMo Kα radiation
a = 7.2163 (6) ŵ = 0.87 mm1
b = 20.5060 (17) ÅT = 293 K
c = 16.5632 (12) Å0.20 × 0.15 × 0.15 mm
β = 97.585 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2791 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2550 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 1.00Rint = 0.020
9257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.10Δρmax = 0.66 e Å3
2791 reflectionsΔρmin = 0.33 e Å3
177 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.50000.224313 (10)0.25000.03976 (9)
N10.4524 (2)0.22681 (7)0.11903 (9)0.0305 (3)
O10.4807 (3)0.16931 (8)0.17478 (8)0.0506 (4)
H1O0.47500.17500.22340.061*0.50
O20.6459 (3)0.26118 (9)0.18437 (10)0.0555 (4)
C10.4841 (3)0.28414 (9)0.07613 (11)0.0323 (4)
C20.4827 (4)0.34294 (10)0.12074 (13)0.0468 (5)
H2A0.46190.34170.17730.056*
C30.5113 (4)0.40127 (11)0.08202 (16)0.0562 (7)
H3A0.50940.43960.11210.067*
C40.5437 (4)0.40349 (11)0.00334 (16)0.0546 (6)
H4A0.56270.44360.02940.065*
C50.5477 (3)0.34808 (11)0.04857 (13)0.0446 (5)
H5A0.57120.35060.10510.054*
C60.5165 (3)0.28627 (9)0.01036 (11)0.0317 (4)
C70.5077 (3)0.22584 (9)0.05293 (11)0.0313 (4)
C80.4621 (3)0.17105 (10)0.00812 (11)0.0344 (4)
H8A0.44670.13190.03480.041*
C90.4376 (3)0.17227 (9)0.07805 (10)0.0302 (4)
C100.3928 (3)0.11103 (9)0.12467 (11)0.0331 (4)
C110.2740 (3)0.11181 (10)0.19829 (12)0.0379 (4)
H11A0.22190.15100.21850.045*
C120.2330 (3)0.05444 (12)0.24147 (13)0.0476 (5)
H12A0.15580.05550.29110.057*
C130.3063 (4)0.00390 (12)0.21119 (15)0.0570 (7)
H13A0.27730.04240.23990.068*
C140.4230 (4)0.00520 (11)0.13802 (15)0.0593 (7)
H14A0.47310.04460.11770.071*
C150.4659 (4)0.05159 (11)0.09489 (12)0.0463 (5)
H15A0.54420.05020.04560.056*
C160.5497 (3)0.22006 (10)0.14510 (11)0.0356 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05874 (17)0.04506 (14)0.01656 (11)0.0000.00894 (9)0.000
N10.0388 (9)0.0352 (8)0.0176 (7)0.0017 (7)0.0040 (6)0.0002 (6)
O10.0877 (12)0.0478 (8)0.0152 (6)0.0092 (8)0.0029 (7)0.0008 (6)
O20.0607 (11)0.0753 (11)0.0275 (8)0.0222 (9)0.0048 (7)0.0068 (7)
C10.0384 (10)0.0364 (10)0.0232 (9)0.0005 (8)0.0081 (8)0.0004 (7)
C20.0718 (16)0.0412 (11)0.0289 (10)0.0025 (11)0.0122 (10)0.0043 (8)
C30.085 (2)0.0358 (11)0.0494 (14)0.0001 (11)0.0162 (13)0.0038 (10)
C40.0766 (18)0.0373 (11)0.0498 (14)0.0021 (11)0.0084 (12)0.0110 (10)
C50.0549 (14)0.0462 (12)0.0330 (11)0.0004 (10)0.0066 (10)0.0110 (9)
C60.0331 (10)0.0391 (10)0.0236 (9)0.0001 (8)0.0060 (7)0.0047 (7)
C70.0313 (10)0.0447 (10)0.0179 (8)0.0001 (8)0.0036 (7)0.0016 (7)
C80.0485 (12)0.0369 (9)0.0179 (8)0.0024 (9)0.0046 (8)0.0019 (7)
C90.0364 (10)0.0368 (9)0.0176 (8)0.0005 (8)0.0039 (7)0.0010 (7)
C100.0457 (12)0.0347 (9)0.0194 (8)0.0039 (8)0.0066 (8)0.0005 (7)
C110.0447 (12)0.0434 (11)0.0252 (9)0.0031 (9)0.0035 (8)0.0000 (8)
C120.0557 (14)0.0549 (13)0.0309 (10)0.0146 (11)0.0007 (10)0.0074 (9)
C130.088 (2)0.0440 (12)0.0401 (12)0.0171 (12)0.0113 (12)0.0106 (10)
C140.101 (2)0.0359 (11)0.0414 (13)0.0018 (12)0.0110 (13)0.0044 (9)
C150.0723 (16)0.0412 (11)0.0243 (10)0.0009 (10)0.0023 (10)0.0027 (8)
C160.0385 (11)0.0488 (11)0.0193 (8)0.0033 (9)0.0031 (8)0.0040 (8)
Geometric parameters (Å, º) top
Ag1—N12.2413 (15)C5—H5A0.9300
Ag1—N1i2.2413 (15)C6—C71.431 (3)
Ag1—O2ii2.6585 (17)C7—C81.363 (3)
Ag1—O2iii2.6585 (17)C7—C161.521 (2)
N1—C91.320 (2)C8—C91.415 (2)
N1—C11.377 (2)C8—H8A0.9300
O1—C161.280 (2)C9—C101.487 (3)
O1—H1O0.8200C10—C151.392 (3)
O2—C161.223 (3)C10—C111.395 (3)
O2—Ag1iii2.6585 (17)C11—C121.388 (3)
C1—C21.414 (3)C11—H11A0.9300
C1—C61.421 (3)C12—C131.376 (4)
C2—C31.360 (3)C12—H12A0.9300
C2—H2A0.9300C13—C141.382 (4)
C3—C41.403 (4)C13—H13A0.9300
C3—H3A0.9300C14—C151.380 (3)
C4—C51.359 (3)C14—H14A0.9300
C4—H4A0.9300C15—H15A0.9300
C5—C61.421 (3)
N1—Ag1—N1i177.38 (8)C8—C7—C16118.96 (17)
N1—Ag1—O2ii97.54 (6)C6—C7—C16123.08 (16)
N1i—Ag1—O2ii82.16 (6)C7—C8—C9121.59 (18)
N1—Ag1—O2iii82.16 (6)C7—C8—H8A119.2
N1i—Ag1—O2iii97.54 (6)C9—C8—H8A119.2
O2ii—Ag1—O2iii167.15 (8)N1—C9—C8121.72 (17)
C9—N1—C1118.51 (16)N1—C9—C10118.39 (15)
C9—N1—Ag1120.76 (12)C8—C9—C10119.90 (16)
C1—N1—Ag1118.86 (11)C15—C10—C11118.69 (18)
C16—O1—H1O109.5C15—C10—C9120.59 (18)
C16—O2—Ag1iii137.88 (16)C11—C10—C9120.70 (17)
N1—C1—C2117.98 (17)C12—C11—C10120.3 (2)
N1—C1—C6122.71 (17)C12—C11—H11A119.8
C2—C1—C6119.30 (17)C10—C11—H11A119.8
C3—C2—C1120.9 (2)C13—C12—C11120.3 (2)
C3—C2—H2A119.6C13—C12—H12A119.9
C1—C2—H2A119.6C11—C12—H12A119.9
C2—C3—C4119.9 (2)C12—C13—C14119.8 (2)
C2—C3—H3A120.0C12—C13—H13A120.1
C4—C3—H3A120.0C14—C13—H13A120.1
C5—C4—C3121.1 (2)C15—C14—C13120.5 (2)
C5—C4—H4A119.4C15—C14—H14A119.8
C3—C4—H4A119.4C13—C14—H14A119.8
C4—C5—C6120.6 (2)C14—C15—C10120.5 (2)
C4—C5—H5A119.7C14—C15—H15A119.8
C6—C5—H5A119.7C10—C15—H15A119.8
C5—C6—C1118.14 (18)O2—C16—O1125.35 (19)
C5—C6—C7124.57 (18)O2—C16—C7120.26 (18)
C1—C6—C7117.24 (16)O1—C16—C7114.37 (17)
C8—C7—C6117.95 (17)
Symmetry codes: (i) x+1, y, z1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1iv0.821.682.470 (3)162
Symmetry code: (iv) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(C16H10.5NO2)2]
Mr605.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)7.2163 (6), 20.5060 (17), 16.5632 (12)
β (°) 97.585 (3)
V3)2429.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.877, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
9257, 2791, 2550
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.10
No. of reflections2791
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.33

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ag1—N12.2413 (15)
N1—Ag1—N1i177.38 (8)
Symmetry code: (i) x+1, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1ii0.821.682.470 (3)162
Symmetry code: (ii) x+1, y, z+1/2.
 

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, H. P., Li, X.-H. & Cheng, Y.-Q. (2005). Acta Cryst. E61, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2005). Acta Cryst. E61, m2273–m2275.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXie, G., Zeng, M.-H., Chen, S.-P. & Gao, S.-L. (2006). Acta Cryst. E62, m397–m399.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds