metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3-methyl-4-nitro­pyridine N-oxide-κO)cadmium(II)]-di-μ-dicyanamido-κ4N1:N5]

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: wrm0505@126.com

(Received 15 December 2008; accepted 26 December 2008; online 8 January 2009)

In the title compound, [Cd(C2N3)2(C6H6N2O3)2]n, the CdII ion (site symmetry [\overline{1}]) adopts a distorted trans-CdO2N4 octa­hedral environment, being coordinated by two O-bonded 3-methyl-4-nitro­pyridine N-oxide ligands and four dicyanamide (dca) anions. The bridging dca anions lead to a polymeric chain propagating in [100].

Related literature

For related structures, see: Ghoshal et al. (2004[Ghoshal, D., Mostafa, G., Maji, T. K., Zangrando, E., Lu, T. H., Ribas, J. & Chaudhuri, N. R. (2004). New J. Chem. 28, 1204-1213.]); Wu et al. (2004[Wu, A.-Q., Zheng, F.-K., Chen, W.-T., Cai, L.-Z., Guo, G.-C., Huang, J.-S., Dong, Z.-C. & Takano, Y. (2004). Inorg. Chem. 43, 4839-4845.]); Schlueter et al. (2005[Schlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194-3202.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2N3)2(C6H6N2O3)2]

  • Mr = 552.76

  • Triclinic, [P \overline 1]

  • a = 7.5472 (8) Å

  • b = 7.5606 (8) Å

  • c = 9.8352 (10) Å

  • α = 83.680 (1)°

  • β = 68.528 (1)°

  • γ = 79.639 (1)°

  • V = 513.14 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.12 mm−1

  • T = 293 (2) K

  • 0.32 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.692, Tmax = 0.817

  • 2770 measured reflections

  • 1780 independent reflections

  • 1764 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.00

  • 1780 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd1—N3i 2.288 (2)
Cd1—N1 2.309 (2)
Cd1—O3 2.3110 (19)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The pseudohalide ligand dicyanamide (dca) has been used widely due to its polydentate character and bridging ability, yielding a variety of structures and interesting magnetic properties (Ghoshal et al., 2004; Wu et al., 2004; Schlueter et al., 2005). As a further study of such complexes, the title CdII complex, (I), is reported in this paper (Fig. 1).

Each CdII atom exhibits a slightly distorted octahedral environment with four nitrogen atoms from dicyanamide groups in the equatorial plane, and two oxygen atoms from two N-oxide (pom) ligands at the axial positions (Table 1). Each CdII atom is coordinated to each other by the double bridging –NC—N—CN– ligands to form a one-dimensional chain structure, the Cd···Cd separation being equal to the value of the a-axis.

Related literature top

For related structures, see: Ghoshal et al. (2004); Wu et al. (2004); Schlueter et al. (2005).

Experimental top

5 ml of a methanol solution of cadmium(II) chloride tetrahydrate (0.5 mmol, 128 mg) and 5 ml of a methanol sulution of dicyanamide (1 mmol, 170 mg) were aded to 10 ml of a methanol solution of POM (1 mmol, 154 mg). The mixture was stirred for 2 h and filtered. The filtrate was slowly evaporated at room temperture and red blocks of (I) were obtained after three weeks.

Refinement top

The hydrogen atoms were included in calculated positions (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Fagment of the infinite chain structure in (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Symmetry codes: (i) 1–x, 1–y, 1–z; (ii) –x, 1–y, 1–z; (iii) x–1, y, z; (iv) 1+x, y, z.
catena-Poly[[bis(3-methyl-4-nitropyridine N-oxide-κO)cadmium(II)]-di-µ-dicyanamido- κ4N1:N5] top
Crystal data top
[Cd(C2N3)2(C6H6N2O3)2]Z = 1
Mr = 552.76F(000) = 274
Triclinic, P1Dx = 1.789 Mg m3
Dm = 1.789 Mg m3
Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5472 (8) ÅCell parameters from 2499 reflections
b = 7.5606 (8) Åθ = 2.7–27.9°
c = 9.8352 (10) ŵ = 1.12 mm1
α = 83.680 (1)°T = 293 K
β = 68.528 (1)°Block, red
γ = 79.639 (1)°0.32 × 0.22 × 0.18 mm
V = 513.14 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1780 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.692, Tmax = 0.817k = 88
2770 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0283P)2 + 0.2723P]
where P = (Fo2 + 2Fc2)/3
1780 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cd(C2N3)2(C6H6N2O3)2]γ = 79.639 (1)°
Mr = 552.76V = 513.14 (9) Å3
Triclinic, P1Z = 1
a = 7.5472 (8) ÅMo Kα radiation
b = 7.5606 (8) ŵ = 1.12 mm1
c = 9.8352 (10) ÅT = 293 K
α = 83.680 (1)°0.32 × 0.22 × 0.18 mm
β = 68.528 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1780 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1764 reflections with I > 2σ(I)
Tmin = 0.692, Tmax = 0.817Rint = 0.015
2770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
1780 reflectionsΔρmin = 0.38 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.50000.50000.50000.04339 (10)
O10.1329 (4)0.2147 (3)0.8956 (2)0.0773 (6)
O20.3397 (3)0.0003 (3)0.8532 (3)0.0777 (6)
O30.3605 (3)0.3892 (3)0.7372 (2)0.0664 (5)
N10.4059 (3)0.2818 (3)0.4054 (3)0.0602 (5)
N20.1066 (3)0.1677 (3)0.4552 (3)0.0601 (6)
N30.2102 (3)0.3289 (3)0.4816 (3)0.0697 (7)
N40.1834 (3)0.0583 (3)0.8629 (2)0.0528 (5)
N50.2298 (3)0.2829 (3)0.7670 (2)0.0474 (4)
C10.2592 (3)0.2383 (3)0.4278 (2)0.0417 (5)
C20.0590 (3)0.2619 (3)0.4680 (2)0.0424 (5)
C30.3067 (4)0.3407 (4)0.9163 (4)0.0644 (7)
H3A0.30830.45790.94600.097*
H3B0.37740.27050.99940.097*
H3C0.36520.35240.84330.097*
C40.1028 (3)0.2488 (3)0.8542 (2)0.0416 (5)
C50.0425 (3)0.0661 (3)0.8317 (2)0.0404 (5)
C60.1501 (4)0.0059 (3)0.7798 (2)0.0481 (5)
H60.18710.12900.76770.058*
C70.2853 (4)0.1047 (4)0.7467 (3)0.0529 (6)
H70.41550.05790.71010.063*
C80.0426 (3)0.3523 (3)0.8193 (3)0.0466 (5)
H80.00920.47540.83260.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02232 (12)0.04541 (15)0.06540 (16)0.00754 (9)0.01648 (10)0.00752 (10)
O10.1114 (18)0.0440 (10)0.0825 (14)0.0268 (11)0.0370 (13)0.0064 (9)
O20.0531 (12)0.0775 (14)0.1087 (17)0.0215 (10)0.0273 (11)0.0157 (12)
O30.0540 (11)0.0882 (14)0.0684 (11)0.0361 (10)0.0250 (9)0.0028 (10)
N10.0430 (12)0.0582 (12)0.0873 (16)0.0097 (10)0.0270 (11)0.0188 (11)
N20.0338 (11)0.0471 (11)0.1011 (17)0.0055 (9)0.0260 (11)0.0039 (11)
N30.0386 (13)0.0663 (14)0.109 (2)0.0053 (11)0.0341 (12)0.0165 (13)
N40.0665 (15)0.0482 (12)0.0449 (10)0.0183 (10)0.0151 (9)0.0078 (8)
N50.0407 (11)0.0577 (12)0.0483 (10)0.0143 (9)0.0189 (8)0.0006 (8)
C10.0333 (12)0.0389 (11)0.0559 (12)0.0019 (9)0.0185 (9)0.0114 (9)
C20.0361 (13)0.0462 (11)0.0487 (12)0.0063 (9)0.0181 (9)0.0071 (9)
C30.0403 (14)0.0534 (14)0.094 (2)0.0019 (11)0.0176 (13)0.0192 (13)
C40.0370 (11)0.0405 (11)0.0470 (11)0.0040 (9)0.0147 (9)0.0043 (9)
C50.0450 (12)0.0398 (11)0.0375 (10)0.0078 (9)0.0152 (9)0.0018 (8)
C60.0527 (14)0.0429 (12)0.0475 (12)0.0049 (10)0.0206 (10)0.0075 (9)
C70.0383 (12)0.0652 (15)0.0529 (13)0.0042 (11)0.0174 (10)0.0087 (11)
C80.0446 (13)0.0395 (11)0.0573 (13)0.0061 (9)0.0201 (10)0.0028 (9)
Geometric parameters (Å, º) top
Cd1—N3i2.288 (2)N4—C51.472 (3)
Cd1—N3ii2.288 (2)N5—C81.341 (3)
Cd1—N12.309 (2)N5—C71.351 (3)
Cd1—N1iii2.309 (2)C3—C41.498 (3)
Cd1—O3iii2.3110 (19)C3—H3A0.9600
Cd1—O32.3110 (19)C3—H3B0.9600
O1—N41.221 (3)C3—H3C0.9600
O2—N41.216 (3)C4—C81.381 (3)
O3—N51.314 (3)C4—C51.390 (3)
N1—C11.149 (3)C5—C61.379 (3)
N2—C11.283 (3)C6—C71.360 (4)
N2—C21.292 (3)C6—H60.9300
N3—C21.128 (3)C7—H70.9300
N3—Cd1iv2.288 (2)C8—H80.9300
N3i—Cd1—N3ii180.0C8—N5—C7120.7 (2)
N3i—Cd1—N187.09 (8)N1—C1—N2172.1 (2)
N3ii—Cd1—N192.91 (8)N3—C2—N2173.4 (3)
N3i—Cd1—N1iii92.91 (8)C4—C3—H3A109.5
N3ii—Cd1—N1iii87.09 (8)C4—C3—H3B109.5
N1—Cd1—N1iii180.0H3A—C3—H3B109.5
N3i—Cd1—O3iii91.11 (9)C4—C3—H3C109.5
N3ii—Cd1—O3iii88.89 (9)H3A—C3—H3C109.5
N1—Cd1—O3iii87.78 (8)H3B—C3—H3C109.5
N1iii—Cd1—O3iii92.22 (8)C8—C4—C5115.5 (2)
N3i—Cd1—O388.89 (9)C8—C4—C3117.9 (2)
N3ii—Cd1—O391.11 (9)C5—C4—C3126.5 (2)
N1—Cd1—O392.22 (8)C6—C5—C4121.8 (2)
N1iii—Cd1—O387.78 (8)C6—C5—N4117.4 (2)
O3iii—Cd1—O3180.0C4—C5—N4120.8 (2)
N5—O3—Cd1119.76 (14)C7—C6—C5119.4 (2)
C1—N1—Cd1132.98 (19)C7—C6—H6120.3
C1—N2—C2123.0 (2)C5—C6—H6120.3
C2—N3—Cd1iv172.3 (2)N5—C7—C6119.8 (2)
O2—N4—O1124.5 (2)N5—C7—H7120.1
O2—N4—C5118.6 (2)C6—C7—H7120.1
O1—N4—C5116.8 (2)N5—C8—C4122.8 (2)
O3—N5—C8119.5 (2)N5—C8—H8118.6
O3—N5—C7119.7 (2)C4—C8—H8118.6
N3i—Cd1—O3—N568.54 (19)C3—C4—C5—C6177.0 (2)
N3ii—Cd1—O3—N5111.46 (19)C8—C4—C5—N4179.23 (19)
N1—Cd1—O3—N518.51 (19)C3—C4—C5—N42.9 (4)
N1iii—Cd1—O3—N5161.49 (19)O2—N4—C5—C6151.9 (2)
O3iii—Cd1—O3—N5103 (100)O1—N4—C5—C627.3 (3)
N3i—Cd1—N1—C134.0 (3)O2—N4—C5—C428.2 (3)
N3ii—Cd1—N1—C1146.0 (3)O1—N4—C5—C4152.6 (2)
N1iii—Cd1—N1—C1139 (100)C4—C5—C6—C71.5 (3)
O3iii—Cd1—N1—C1125.2 (3)N4—C5—C6—C7178.7 (2)
O3—Cd1—N1—C154.8 (3)O3—N5—C7—C6178.9 (2)
Cd1—O3—N5—C897.0 (2)C8—N5—C7—C60.2 (3)
Cd1—O3—N5—C784.0 (2)C5—C6—C7—N51.1 (3)
Cd1—N1—C1—N2128.5 (19)O3—N5—C8—C4179.4 (2)
C2—N2—C1—N1174.7 (18)C7—N5—C8—C40.4 (3)
Cd1iv—N3—C2—N2173.9 (15)C5—C4—C8—N50.1 (3)
C1—N2—C2—N3180 (100)C3—C4—C8—N5178.1 (2)
C8—C4—C5—C60.9 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C2N3)2(C6H6N2O3)2]
Mr552.76
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5472 (8), 7.5606 (8), 9.8352 (10)
α, β, γ (°)83.680 (1), 68.528 (1), 79.639 (1)
V3)513.14 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.32 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.692, 0.817
No. of measured, independent and
observed [I > 2σ(I)] reflections
2770, 1780, 1764
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.00
No. of reflections1780
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.38

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—N3i2.288 (2)Cd1—O32.3110 (19)
Cd1—N12.309 (2)
N3ii—Cd1—N3i180.0N1—Cd1—O3iii87.78 (8)
N3ii—Cd1—N187.09 (8)N1iii—Cd1—O3iii92.22 (8)
N3i—Cd1—N192.91 (8)N3ii—Cd1—O388.89 (9)
N3ii—Cd1—N1iii92.91 (8)N3i—Cd1—O391.11 (9)
N3i—Cd1—N1iii87.09 (8)N1—Cd1—O392.22 (8)
N1—Cd1—N1iii180.0N1iii—Cd1—O387.78 (8)
N3ii—Cd1—O3iii91.11 (9)O3iii—Cd1—O3180.0
N3i—Cd1—O3iii88.89 (9)C1—N2—C2123.0 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Department of Chemistry of Dezhou University.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhoshal, D., Mostafa, G., Maji, T. K., Zangrando, E., Lu, T. H., Ribas, J. & Chaudhuri, N. R. (2004). New J. Chem. 28, 1204–1213.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem. 44, 3194–3202.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, A.-Q., Zheng, F.-K., Chen, W.-T., Cai, L.-Z., Guo, G.-C., Huang, J.-S., Dong, Z.-C. & Takano, Y. (2004). Inorg. Chem. 43, 4839–4845.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds