metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{aqua­chlorido[3-ethyl-4-phenyl-5-(2-pyrid­yl)-4H-1,2,4-triazole-κ2N1,N5]manganese(II)}

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China, and bJiangsu Institute of Nuclear Medicine, Wuxi 214063, People's Republic of China
*Correspondence e-mail: wangzx0908@yahoo.com.cn

(Received 15 December 2008; accepted 29 December 2008; online 8 January 2009)

In the centrosymmetric dinuclear title compound, [Mn2Cl4(C15H14N4)2(H2O)2], the MnII atom is coordinated by an N,N′-bidentate ligand, a water mol­ecule, a terminal chloride ion and two bridging chloride ions in a distorted MnN2OCl3 octa­hedral geometry. The Mn⋯Mn separation is 3.6563 (9) Å. In the crystal structure, O—H⋯N and O—H⋯Cl hydrogen bonds help to establish the packing.

Related literature

For background, see: Klingele et al. (2005[Klingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910-918.]), Kume et al. (2006[Kume, S., Kuroiwa, K. & Kimizuka, N. (2006). Chem. Commun. pp. 2442-2444.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2Cl4(C15H14N4)2(H2O)2]

  • Mr = 788.32

  • Monoclinic, P 21 /c

  • a = 9.9369 (15) Å

  • b = 8.9369 (13) Å

  • c = 19.642 (3) Å

  • β = 103.323 (2)°

  • V = 1697.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 (2) K

  • 0.32 × 0.26 × 0.24 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.72, Tmax = 0.77

  • 8811 measured reflections

  • 3329 independent reflections

  • 2364 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.105

  • S = 1.02

  • 3329 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.273 (2)
Mn1—N2 2.280 (3)
Mn1—N1 2.344 (3)
Mn1—Cl2 2.4544 (11)
Mn1—Cl1 2.5252 (11)
Mn1—Cl1i 2.5387 (11)
Mn1—Cl1—Mn1i 92.45 (4)
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2ii 0.85 2.28 3.122 (3) 170
O1—H1C⋯N3ii 0.85 2.12 2.875 (4) 148
Symmetry code: (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,2,4-triazole ring can act as a bidentate ligand in coordination chemistry (e.g. Klingele et al., 2005; Kume et al. 2006). We report here the synthesis and crystal structure analysis of the title compound, (I).

The structure of (I) is shown in Fig.1. The title compound is a centrosymmetric dinuclear maganese(II) complex bridged by two chloride ions (Table 1). The dihedral angle between the triazole and pyridine rings is 9.42 (24)°, and that between the triazole and benzene rings is 80.53 (12)°. In the crystal, O—H···N and O—H···Cl hydrogen bonds (Table 2) help to establish the packing.

Related literature top

For background, see: Klingele et al. (2005); Kume et al. (2006).

Experimental top

To a warm solution of 0.501 g of 3-ethyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole (2.0 mmol) in 10 ml ethanol, 0.792 g of manganese(II) chloride tetrahydrate (4.0 mmol) in 10 ml water was added. The filtrate was left to stand at room temperature for several days, and pale yellow blocks of (I) were collected.

Refinement top

The H atoms were gemoetrically placed (C—H = 0.93–0.97Å, O—H = 0.85Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with Displacement ellipsoids shown at the 30% probability level and H atoms omitted for clarity. Mn1A and the unlabelled atoms are generated by the symmetry operation (1–x, 2–y, 1–z).
Di-µ-chlorido-bis{aquachlorido[3-ethyl-4-phenyl-5-(2-pyridyl)-4H- 1,2,4-triazole-κ2N1,N5]manganese(II)} top
Crystal data top
[Mn2Cl4(C15H14N4)2(H2O)2]F(000) = 804
Mr = 788.32Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4766 reflections
a = 9.9369 (15) Åθ = 2.5–28.0°
b = 8.9369 (13) ŵ = 1.10 mm1
c = 19.642 (3) ÅT = 293 K
β = 103.323 (2)°Block, pale yellow
V = 1697.3 (4) Å30.32 × 0.26 × 0.24 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3329 independent reflections
Radiation source: sealed tube2364 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 128
Tmin = 0.72, Tmax = 0.77k = 1110
8811 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.04P)2 + 0.95P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
[Mn2Cl4(C15H14N4)2(H2O)2]V = 1697.3 (4) Å3
Mr = 788.32Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.9369 (15) ŵ = 1.10 mm1
b = 8.9369 (13) ÅT = 293 K
c = 19.642 (3) Å0.32 × 0.26 × 0.24 mm
β = 103.323 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2364 reflections with I > 2σ(I)
Tmin = 0.72, Tmax = 0.77Rint = 0.045
8811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
3329 reflectionsΔρmin = 0.44 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.52358 (6)0.80195 (6)0.52295 (3)0.03231 (16)
Cl10.32636 (10)0.98690 (10)0.50448 (4)0.0327 (2)
Cl20.46719 (10)0.68828 (10)0.40606 (4)0.0340 (2)
C10.5362 (4)0.9652 (4)0.67503 (19)0.0356 (9)
H10.47231.02950.64770.043*
C20.5739 (4)0.9897 (5)0.7457 (2)0.0416 (10)
H20.53931.07150.76540.050*
C30.6643 (4)0.8909 (5)0.78734 (19)0.0404 (10)
H30.68960.90380.83560.049*
C40.7167 (4)0.7719 (4)0.75560 (18)0.0365 (9)
H40.77570.70250.78250.044*
C50.6801 (3)0.7581 (4)0.68393 (18)0.0263 (7)
C60.7326 (4)0.6459 (4)0.64299 (19)0.0324 (8)
C70.8480 (4)0.4695 (4)0.60588 (18)0.0335 (8)
C80.9328 (5)0.3335 (5)0.60667 (19)0.0438 (10)
H8A1.01220.34150.64590.053*
H8B0.87860.24880.61590.053*
C90.9834 (4)0.2988 (5)0.5451 (2)0.0422 (10)
H9A0.90740.29770.50470.063*
H9B1.02720.20240.55060.063*
H9C1.04920.37340.53900.063*
C100.8737 (4)0.4760 (4)0.73627 (18)0.0368 (9)
C111.0054 (4)0.5134 (5)0.77226 (18)0.0390 (9)
H111.06200.57270.75170.047*
C121.0518 (4)0.4594 (5)0.84098 (19)0.0397 (10)
H121.13970.48350.86700.048*
C130.9654 (4)0.3702 (5)0.86918 (19)0.0420 (10)
H130.99600.33350.91440.050*
C140.8336 (5)0.3345 (5)0.83126 (19)0.0421 (10)
H140.77580.27640.85170.051*
C150.7878 (5)0.3844 (5)0.7637 (2)0.0443 (10)
H150.70120.35700.73720.053*
N10.5877 (3)0.8514 (3)0.64330 (14)0.0303 (7)
N20.7055 (3)0.6526 (3)0.57301 (15)0.0322 (7)
N30.7784 (3)0.5400 (3)0.55068 (15)0.0329 (7)
N40.8223 (3)0.5325 (3)0.66508 (14)0.0313 (7)
O10.3944 (3)0.6254 (3)0.56175 (12)0.0321 (6)
H1A0.44200.54610.57210.039*
H1C0.32280.60620.52990.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0361 (3)0.0276 (3)0.0307 (3)0.0000 (2)0.0025 (2)0.0027 (2)
Cl10.0357 (5)0.0278 (4)0.0319 (4)0.0004 (4)0.0022 (4)0.0028 (3)
Cl20.0396 (5)0.0281 (5)0.0320 (4)0.0000 (4)0.0033 (4)0.0023 (3)
C10.044 (2)0.0233 (18)0.039 (2)0.0110 (16)0.0080 (17)0.0013 (16)
C20.043 (2)0.040 (2)0.044 (2)0.0019 (18)0.0136 (19)0.0123 (18)
C30.040 (2)0.054 (3)0.0277 (18)0.002 (2)0.0079 (17)0.0088 (18)
C40.039 (2)0.039 (2)0.0292 (18)0.0055 (18)0.0043 (16)0.0020 (16)
C50.0177 (15)0.0252 (17)0.0346 (17)0.0063 (13)0.0027 (14)0.0008 (14)
C60.037 (2)0.0271 (18)0.0341 (19)0.0037 (16)0.0110 (17)0.0057 (15)
C70.039 (2)0.0322 (19)0.0292 (18)0.0090 (17)0.0079 (16)0.0013 (15)
C80.061 (3)0.041 (2)0.031 (2)0.021 (2)0.0134 (19)0.0053 (17)
C90.040 (2)0.045 (2)0.042 (2)0.0178 (19)0.0108 (18)0.0159 (19)
C100.045 (2)0.035 (2)0.0272 (17)0.0145 (18)0.0007 (17)0.0003 (16)
C110.047 (2)0.043 (2)0.0253 (17)0.0156 (19)0.0036 (18)0.0038 (16)
C120.041 (2)0.045 (2)0.0313 (19)0.0245 (19)0.0045 (18)0.0087 (17)
C130.047 (3)0.047 (2)0.0293 (19)0.024 (2)0.0044 (18)0.0118 (17)
C140.049 (3)0.043 (2)0.0313 (19)0.0236 (19)0.0022 (18)0.0072 (16)
C150.042 (2)0.052 (3)0.038 (2)0.007 (2)0.0074 (19)0.0102 (19)
N10.0344 (17)0.0319 (16)0.0232 (14)0.0032 (13)0.0036 (13)0.0050 (12)
N20.0368 (18)0.0262 (16)0.0313 (16)0.0005 (13)0.0029 (14)0.0041 (12)
N30.0374 (18)0.0287 (16)0.0303 (15)0.0047 (14)0.0027 (13)0.0028 (12)
N40.0355 (17)0.0337 (16)0.0224 (14)0.0055 (14)0.0019 (13)0.0034 (12)
O10.0367 (14)0.0260 (13)0.0330 (13)0.0022 (11)0.0066 (11)0.0033 (10)
Geometric parameters (Å, º) top
Mn1—O12.273 (2)C7—C81.477 (5)
Mn1—N22.280 (3)C8—C91.447 (5)
Mn1—N12.344 (3)C8—H8A0.9700
Mn1—Cl22.4544 (11)C8—H8B0.9700
Mn1—Cl12.5252 (11)C9—H9A0.9600
Mn1—Cl1i2.5387 (11)C9—H9B0.9600
Cl1—Mn1i2.5387 (11)C9—H9C0.9600
C1—N11.353 (5)C10—C111.377 (6)
C1—C21.369 (5)C10—C151.379 (6)
C1—H10.9300C10—N41.463 (4)
C2—C31.385 (6)C11—C121.407 (5)
C2—H20.9300C11—H110.9300
C3—C41.393 (5)C12—C131.378 (6)
C3—H30.9300C12—H120.9300
C4—C51.376 (5)C13—C141.387 (6)
C4—H40.9300C13—H130.9300
C5—N11.356 (4)C14—C151.374 (5)
C5—C61.455 (5)C14—H140.9300
C6—N21.340 (5)C15—H150.9300
C6—N41.354 (5)N2—N31.370 (4)
C7—N31.306 (4)O1—H1A0.8500
C7—N41.368 (4)O1—H1C0.8500
O1—Mn1—N284.37 (10)C9—C8—H8B107.7
O1—Mn1—N180.58 (10)C7—C8—H8B107.7
N2—Mn1—N170.80 (10)H8A—C8—H8B107.1
O1—Mn1—Cl290.09 (7)C8—C9—H9A109.5
N2—Mn1—Cl298.54 (8)C8—C9—H9B109.5
N1—Mn1—Cl2166.35 (8)H9A—C9—H9B109.5
O1—Mn1—Cl191.32 (7)C8—C9—H9C109.5
N2—Mn1—Cl1163.18 (8)H9A—C9—H9C109.5
N1—Mn1—Cl192.47 (8)H9B—C9—H9C109.5
Cl2—Mn1—Cl197.71 (3)C11—C10—C15122.9 (4)
O1—Mn1—Cl1i172.57 (7)C11—C10—N4119.2 (4)
N2—Mn1—Cl1i94.62 (8)C15—C10—N4117.8 (4)
N1—Mn1—Cl1i92.13 (8)C10—C11—C12118.2 (4)
Cl2—Mn1—Cl1i97.34 (4)C10—C11—H11120.9
Cl1—Mn1—Cl1i87.55 (4)C12—C11—H11120.9
Mn1—Cl1—Mn1i92.45 (4)C13—C12—C11119.1 (4)
N1—C1—C2122.9 (3)C13—C12—H12120.4
N1—C1—H1118.6C11—C12—H12120.4
C2—C1—H1118.6C12—C13—C14121.1 (4)
C1—C2—C3119.1 (4)C12—C13—H13119.4
C1—C2—H2120.5C14—C13—H13119.4
C3—C2—H2120.5C15—C14—C13120.3 (4)
C2—C3—C4118.7 (3)C15—C14—H14119.8
C2—C3—H3120.6C13—C14—H14119.8
C4—C3—H3120.6C14—C15—C10118.3 (4)
C5—C4—C3119.2 (4)C14—C15—H15120.9
C5—C4—H4120.4C10—C15—H15120.9
C3—C4—H4120.4C1—N1—C5117.9 (3)
N1—C5—C4122.0 (3)C1—N1—Mn1124.2 (2)
N1—C5—C6112.3 (3)C5—N1—Mn1117.9 (2)
C4—C5—C6125.7 (3)C6—N2—N3107.5 (3)
N2—C6—N4108.9 (3)C6—N2—Mn1114.8 (2)
N2—C6—C5121.6 (3)N3—N2—Mn1135.8 (2)
N4—C6—C5129.2 (3)C7—N3—N2107.8 (3)
N3—C7—N4109.9 (3)C6—N4—C7105.9 (3)
N3—C7—C8126.7 (3)C6—N4—C10128.6 (3)
N4—C7—C8123.2 (3)C7—N4—C10125.3 (3)
C9—C8—C7118.3 (3)Mn1—O1—H1A109.5
C9—C8—H8A107.7Mn1—O1—H1C109.5
C7—C8—H8A107.7H1A—O1—H1C109.5
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.852.283.122 (3)170
O1—H1C···N3ii0.852.122.875 (4)148
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn2Cl4(C15H14N4)2(H2O)2]
Mr788.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.9369 (15), 8.9369 (13), 19.642 (3)
β (°) 103.323 (2)
V3)1697.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.72, 0.77
No. of measured, independent and
observed [I > 2σ(I)] reflections
8811, 3329, 2364
Rint0.045
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.105, 1.02
No. of reflections3329
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.44

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.273 (2)Mn1—Cl22.4544 (11)
Mn1—N22.280 (3)Mn1—Cl12.5252 (11)
Mn1—N12.344 (3)Mn1—Cl1i2.5387 (11)
Mn1—Cl1—Mn1i92.45 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.852.283.122 (3)170
O1—H1C···N3ii0.852.122.875 (4)148
Symmetry code: (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to Jingye Pharmachemical Pilot Plant for financial assistance through project No. 8507041056.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKlingele, M. H., Boyd, P. D. W., Moubaraki, B., Murray, K. S. & Brooker, S. (2005). Eur. J. Inorg. Chem. pp. 910–918.  Web of Science CSD CrossRef Google Scholar
First citationKume, S., Kuroiwa, K. & Kimizuka, N. (2006). Chem. Commun. pp. 2442–2444.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds