metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m213-m214

catena-Poly[[di­aqua­rubidium(I)](μ2-3-carb­oxy­pyrazine-2-carboxyl­ato)(μ2-pyrazine-2,3-di­carboxylic acid)]

aDepartment of Chemistry, Faculty of Art and Science, University of Kırıkkale, Campus, Yahsihan, 71450 Kırıkkale, Turkey, and bDepartment of Physics, Faculty of Art and Science, University of Kirikkale, Campus, Yahsihan, 71450 Kırıkkale, Turkey
*Correspondence e-mail: mustafatombul38@gmail.com

(Received 25 November 2008; accepted 15 January 2009; online 23 January 2009)

The structural unit of the title compound, [Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]n, consists of one rubidium cation, one hydrogen pyrazine-2,3-dicarboxyl­ate anion, one pyrazine-2,3-dicarboxylic acid mol­ecule and two water mol­ecules. This formulation is repeated twice in the asymmetric unit as the rubidium cation lies on an inversion centre. Each anion or acid mol­ecule is linked to two rubidium cations, while the rubidium cation has close contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each rubidium cation is coordinated by two water O atoms, raising the coordination number to eight. One of the carboxyl groups of the acid holds its H atom, which forms a hydrogen bond to a coordinated water mol­ecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H⋯O hydrogen bond disordered over an inversion centre. The stabil­ization of the crystal structure is further assisted by O—H⋯O and O—H⋯N hydrogen-bonding inter­actions involving the water mol­ecules and carboxyl­ate O atoms.

Related literature

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973[Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121-1126.]) and its dianion (Richard et al., 1973[Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.]; Nepveu et al., 1993[Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465-1466.]) have been used in the construction of multi-dimensional frameworks. A variety of metal–pyrazine-2,3-dicarboxylic acid complexes have been characterized, including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500.]; Starosta & Leciejewicz, 2005[Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.]), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.]), sodium (Tombul et al., 2006[Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.]), caesium (Tombul et al., 2007[Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783-m1784.]), potassium (Tombul et al., 2008a[Tombul, M., Güven, K. & Svoboda, I. (2008a). Acta Cryst. E64, m246-m247.]) and lithium (Tombul et al., 2008b[Tombul, M., Güven, K. & Büyükgüngör, O. (2008b). Acta Cryst. E64, m491-m492.]) complexes. For Rb—N bond lengths, see: Yang et al. (2008[Yang, Z., Hu, M. & Wang, X. (2008). Acta Cryst. E64, m225.]); Cametti et al. (2005[Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831-3837.]); Wiesbrock & Schmidbaur (2003[Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.]); Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]); Devi & Vidyasagar (2000[Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391-2396.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]

  • Mr = 456.72

  • Triclinic, [P \overline 1]

  • a = 7.452 (2) Å

  • b = 7.8640 (15) Å

  • c = 8.3280 (12) Å

  • α = 69.111 (12)°

  • β = 81.424 (19)°

  • γ = 65.322 (18)°

  • V = 414.32 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 298 (2) K

  • 0.20 × 0.15 × 0.06 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: numerical (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.]) Tmin = 0.581, Tmax = 0.838

  • 5329 measured reflections

  • 5057 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.048

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.219

  • S = 0.98

  • 5057 reflections

  • 133 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.35 e Å−3

  • Δρmin = −1.91 e Å−3

Table 1
Selected geometric parameters (Å, °)

Rb1—O3i 2.987 (3)
Rb1—N2ii 3.007 (3)
Rb1—O5 3.096 (4)
Rb1—O1 3.137 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x+1, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O3iv 0.93 1.55 (1) 2.468 (3) 170 (1)
O5—H5A⋯N1 0.84 (9) 2.07 (9) 2.888 (3) 168 (7)
O5—H5B⋯O4v 0.82 (6) 1.94 (6) 2.753 (3) 170.39 (5)
O2—H2⋯O5vi 0.82 1.79 2.596 (6) 166 (1)
Symmetry codes: (iv) -x+1, -y+2, -z; (v) x, y-1, z; (vi) -x+2, -y, -z+1.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997[Molecular Structure Corporation (1997). TEXSAN for Windows and MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997[Molecular Structure Corporation (1997). TEXSAN for Windows and MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimensional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically owing to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al., 2006), caesium (Tombul et al., 2007) and potassium (Tombul et al., 2008a) and lithium (Tombul et al., 2008b) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric rubidium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.

The structural unit of the title compound, (I), contains one rubidium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice in the asymmetric unit, since the rubidium ion lies on an inversion centre. This compound is isostructural with the corresponding potassium and caesium complexes, which are fully described previously (Tombul et al., 2008a; Tombul et al., 2007). Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups (O3ii and O3iii) complete the charge balance of the cation. Taking a larger domain of the crystal structure, the anion or acid molecule is linked to two rubidium cations, while the Rb+ cation is surrounded by four organic ligands, two of which are coordinated by employing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each rubidium cation is coordinated by two water molecules, raising a coordination number of eight. The inner coordination sphere accommodates comprises six oxygen atoms (O1, O1i, O3ii, O3iii, O5 and O5i), together with two nitrogen atoms (N2ii and N2iii). The planes of the carboxylic/carboxylate groups (O1/C1/C2/O2) and (O3/C6/C5/O4) form dihedral angles with the ring (C2/C3/C4/C5/N1/N2) plane of 75.87 (16) and 6.65 (21), respectively. The Rb—O distances are in the range from 2.987 (3) Å to 3.137 (3) Å, which are well within the range reported in the literature for other rubidium complexes (Yang et al. 2008; Cametti et al., 2005; Wiesbrock & Schmidbaur, 2003; Shannon, 1976; Devi & Vidyasagar, 2000). Rb—N bond lengths also lie within the normal ranges found for similar bonds in the literature (Yang et al. 2008).

In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms O—H···O [O···O = 2.468 (3) 2.596 (2) Å respectively]. Atom H1 is involved in this bond and maintains the charge balance within the structure. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring. The polymeric complex is linked in a three-dimensional manner by further numerous intermolecular O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 2)

Related literature top

Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) Forhave been used in the construction of multi-dimensional frameworks. A variety of metal–pyrazine-2,3-dicarboxylic acid complexes have been characterized, including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al., 2006), caesium (Tombul et al., 2007), potassium (Tombul et al., 2008a) and lithium (Tombul et al., 2008b) complexes. For Rb—N bond lengths, see: Yang et al. (2008); Cametti et al. (2005); Wiesbrock & Schmidbaur (2003); Shannon (1976); Devi & Vidyasagar (2000).

Experimental top

Rb~2~CO~3~ (462 mg, 2 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine 2,3-dicarboxylic acid (672 mg, 4 mmol), until no further bubbles formed. The reaction mixture produced a colourless and clear solution which was stirred at 323 K for 200 min., until it solidified. The solid product was then redissolved in water (5 ml) and allowed to stand for three days at ambient temperature, after which transparent fine crystals were harvested.

Refinement top

The H5A atom of water molecule was located in a difference map. The position of H5B atom was obtained from difference map and then its position was refined with riding constraint.The other hydyrogen atoms (H1, H2, H3, H4) were repositioned geometrically. (C—H = 0.93 Å, O—H = 0.93 Å and O—H = 0.82 Å) and U\ĩso\~(H) (in the range 1.2–1.5 times U\~eq\~ of the parent atom).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997); data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view diagram of the structure of (I) together with asymmetric units. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, -z, (ii) 1 + x, y - 1, z, (iii) -x + 2, -y, -z, (vii) x - 1, y + 1, z].
[Figure 2] Fig. 2. Hydrogen bongd diagram of (I). Dashed lines indicate hydrogen bonds. (H atoms of carbons were ommited for clarity).
catena-Poly[[diaquarubidium(I)](µ2-3-carboxypyrazine-2- carboxylato)(µ2-pyrazine-2,3-dicarboxylic acid)] top
Crystal data top
[Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]Z = 1
Mr = 456.72F(000) = 228
Triclinic, P1Dx = 1.830 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.452 (2) ÅCell parameters from 25 reflections
b = 7.8640 (15) Åθ = 2.6–9.2°
c = 8.3280 (12) ŵ = 3.05 mm1
α = 69.111 (12)°T = 298 K
β = 81.424 (19)°Prism, colourless
γ = 65.322 (18)°0.20 × 0.15 × 0.06 mm
V = 414.32 (16) Å3
Data collection top
Rigaku AFC-7S
diffractometer
1604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 40.0°, θmin = 2.6°
ω–2θ scansh = 1313
Absorption correction: numerical
(Clark & Reid, 1995)
k = 1213
Tmin = 0.581, Tmax = 0.838l = 015
5329 measured reflections3 standard reflections every 150 reflections
5057 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.219 w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5448P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.002
5057 reflectionsΔρmax = 1.35 e Å3
133 parametersΔρmin = 1.91 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.093 (11)
Crystal data top
[Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]γ = 65.322 (18)°
Mr = 456.72V = 414.32 (16) Å3
Triclinic, P1Z = 1
a = 7.452 (2) ÅMo Kα radiation
b = 7.8640 (15) ŵ = 3.05 mm1
c = 8.3280 (12) ÅT = 298 K
α = 69.111 (12)°0.20 × 0.15 × 0.06 mm
β = 81.424 (19)°
Data collection top
Rigaku AFC-7S
diffractometer
1604 reflections with I > 2σ(I)
Absorption correction: numerical
(Clark & Reid, 1995)
Rint = 0.048
Tmin = 0.581, Tmax = 0.8383 standard reflections every 150 reflections
5329 measured reflections intensity decay: none
5057 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0531 restraint
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 1.35 e Å3
5057 reflectionsΔρmin = 1.91 e Å3
133 parameters
Special details top

Experimental. [analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995)]

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb11.00000.00000.00000.0474 (3)
O10.9512 (4)0.1940 (5)0.2826 (4)0.0451 (7)
O20.8035 (5)0.3205 (6)0.4927 (4)0.0555 (9)
H20.91570.29060.52290.083*
O30.4264 (4)0.8765 (4)0.0673 (4)0.0472 (7)
H10.47420.97620.02560.071*0.50
O40.7256 (4)0.6622 (5)0.1716 (5)0.0497 (8)
O50.8582 (5)0.1900 (5)0.3618 (5)0.0520 (8)
N10.5456 (5)0.1950 (5)0.3236 (4)0.0367 (7)
N20.2959 (4)0.5834 (5)0.1521 (4)0.0333 (6)
C10.8065 (5)0.2816 (5)0.3520 (5)0.0335 (7)
C20.6004 (5)0.3460 (5)0.2892 (4)0.0307 (7)
C30.3632 (6)0.2399 (6)0.2753 (5)0.0390 (8)
H30.31900.13920.29800.047*
C40.2388 (6)0.4346 (6)0.1918 (5)0.0372 (8)
H40.11170.46120.16290.045*
C50.4790 (5)0.5392 (5)0.1997 (4)0.0297 (7)
C60.5508 (6)0.7044 (5)0.1459 (5)0.0344 (8)
H5A0.761 (12)0.087 (12)0.364 (10)0.10 (3)*
H5B0.816 (8)0.243 (8)0.316 (6)0.057 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0433 (4)0.0367 (3)0.0434 (4)0.0028 (2)0.0063 (2)0.0051 (2)
O10.0316 (14)0.0510 (17)0.0607 (19)0.0160 (13)0.0025 (13)0.0265 (15)
O20.0423 (16)0.079 (2)0.0460 (17)0.0112 (16)0.0128 (13)0.0312 (17)
O30.0395 (15)0.0302 (13)0.069 (2)0.0180 (12)0.0093 (14)0.0036 (13)
O40.0393 (15)0.0428 (16)0.075 (2)0.0207 (13)0.0172 (14)0.0157 (15)
O50.0471 (18)0.0489 (18)0.066 (2)0.0120 (15)0.0233 (15)0.0253 (16)
N10.0360 (16)0.0293 (14)0.0426 (17)0.0139 (12)0.0078 (13)0.0053 (12)
N20.0290 (14)0.0350 (15)0.0375 (16)0.0144 (12)0.0070 (12)0.0088 (12)
C10.0304 (17)0.0321 (17)0.0395 (19)0.0143 (14)0.0057 (14)0.0089 (14)
C20.0299 (16)0.0340 (17)0.0304 (17)0.0148 (14)0.0030 (13)0.0093 (13)
C30.040 (2)0.0370 (19)0.046 (2)0.0223 (16)0.0045 (16)0.0094 (16)
C40.0324 (17)0.043 (2)0.041 (2)0.0219 (16)0.0042 (15)0.0096 (16)
C50.0307 (16)0.0325 (16)0.0300 (16)0.0147 (13)0.0050 (13)0.0100 (13)
C60.0397 (19)0.0314 (17)0.0400 (19)0.0200 (15)0.0049 (15)0.0113 (14)
Geometric parameters (Å, º) top
Rb1—O3i2.987 (3)O4—C61.234 (5)
Rb1—O3ii2.987 (3)O5—H5A0.84 (9)
Rb1—N2ii3.007 (3)O5—H5B0.82 (6)
Rb1—N2i3.007 (3)N1—C21.336 (5)
Rb1—O53.096 (4)N1—C31.340 (5)
Rb1—O5iii3.096 (4)N2—C41.326 (5)
Rb1—O1iii3.137 (3)N2—C51.344 (4)
Rb1—O13.137 (3)N2—Rb1iv3.007 (3)
Rb1—H5B3.16 (5)C1—C21.513 (5)
O1—C11.204 (5)C2—C51.389 (5)
O2—C11.307 (5)C3—C41.391 (6)
O2—H20.8210C3—H30.9300
O3—C61.274 (5)C4—H40.9300
O3—Rb1iv2.987 (3)C5—C61.506 (5)
O3—H10.9299
O3i—Rb1—O3ii180.00 (14)O5iii—Rb1—H5B165.0 (3)
O3i—Rb1—N2ii126.56 (8)O1iii—Rb1—H5B104.1 (4)
O3ii—Rb1—N2ii53.44 (8)O1—Rb1—H5B76.0 (10)
O3i—Rb1—N2i53.44 (8)C1—O1—Rb1131.4 (2)
O3ii—Rb1—N2i126.56 (8)C1—O2—H2111.2
N2ii—Rb1—N2i180.0C6—O3—Rb1iv128.1 (2)
O3i—Rb1—O578.94 (9)C6—O3—H1116.0
O3ii—Rb1—O5101.06 (9)Rb1iv—O3—H1115.9
N2ii—Rb1—O570.89 (9)Rb1—O5—H5A95 (5)
N2i—Rb1—O5109.11 (9)Rb1—O5—H5B87 (4)
O3i—Rb1—O5iii101.06 (9)H5A—O5—H5B104 (6)
O3ii—Rb1—O5iii78.94 (9)C2—N1—C3116.8 (3)
N2ii—Rb1—O5iii109.11 (9)C4—N2—C5117.1 (3)
N2i—Rb1—O5iii70.89 (9)C4—N2—Rb1iv119.0 (2)
O5—Rb1—O5iii180.00 (13)C5—N2—Rb1iv123.5 (2)
O3i—Rb1—O1iii81.24 (8)O1—C1—O2126.2 (3)
O3ii—Rb1—O1iii98.76 (8)O1—C1—C2121.8 (3)
N2ii—Rb1—O1iii76.07 (8)O2—C1—C2111.8 (3)
N2i—Rb1—O1iii103.93 (8)N1—C2—C5121.9 (3)
O5—Rb1—O1iii118.29 (9)N1—C2—C1113.0 (3)
O5iii—Rb1—O1iii61.71 (9)C5—C2—C1125.1 (3)
O3i—Rb1—O198.76 (8)N1—C3—C4121.2 (3)
O3ii—Rb1—O181.24 (8)N1—C3—H3119.4
N2ii—Rb1—O1103.93 (8)C4—C3—H3119.4
N2i—Rb1—O176.07 (8)N2—C4—C3122.0 (3)
O5—Rb1—O161.71 (9)N2—C4—H4119.0
O5iii—Rb1—O1118.29 (9)C3—C4—H4119.0
O1iii—Rb1—O1180.00 (14)N2—C5—C2120.9 (3)
O3i—Rb1—H5B70.4 (9)N2—C5—C6117.8 (3)
O3ii—Rb1—H5B109.6 (9)C2—C5—C6121.2 (3)
N2ii—Rb1—H5B69.3 (10)O4—C6—O3125.3 (3)
N2i—Rb1—H5B110.7 (10)O4—C6—C5118.4 (3)
O5—Rb1—H5B15.1 (10)O3—C6—C5116.1 (3)
O3i—Rb1—O1—C14.0 (4)Rb1iv—N2—C4—C3174.7 (3)
O3ii—Rb1—O1—C1176.0 (4)N1—C3—C4—N21.8 (7)
N2ii—Rb1—O1—C1127.2 (4)C4—N2—C5—C21.2 (5)
N2i—Rb1—O1—C152.8 (4)Rb1iv—N2—C5—C2171.6 (3)
O5—Rb1—O1—C168.3 (4)C4—N2—C5—C6176.2 (3)
O5iii—Rb1—O1—C1111.7 (4)Rb1iv—N2—C5—C611.0 (4)
Rb1—O1—C1—O2164.6 (3)N1—C2—C5—N23.7 (6)
Rb1—O1—C1—C210.4 (6)C1—C2—C5—N2178.5 (3)
C3—N1—C2—C53.4 (6)N1—C2—C5—C6173.6 (3)
C3—N1—C2—C1178.7 (3)C1—C2—C5—C64.2 (6)
O1—C1—C2—N172.3 (5)Rb1iv—O3—C6—O4179.2 (3)
O2—C1—C2—N1103.3 (4)Rb1iv—O3—C6—C55.3 (5)
O1—C1—C2—C5105.6 (5)N2—C5—C6—O4171.9 (4)
O2—C1—C2—C578.8 (5)C2—C5—C6—O45.5 (6)
C2—N1—C3—C40.7 (6)N2—C5—C6—O33.9 (5)
C5—N2—C4—C31.5 (6)C2—C5—C6—O3178.7 (4)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x+2, y, z; (iv) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O3v0.931.55 (1)2.468 (3)170 (1)
O5—H5A···N10.84 (9)2.07 (9)2.888 (3)168 (7)
O5—H5B···O4vi0.82 (6)1.94 (6)2.753 (3)170 (1)
O2—H2···O5vii0.821.792.596 (6)166 (1)
Symmetry codes: (v) x+1, y+2, z; (vi) x, y1, z; (vii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]
Mr456.72
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.452 (2), 7.8640 (15), 8.3280 (12)
α, β, γ (°)69.111 (12), 81.424 (19), 65.322 (18)
V3)414.32 (16)
Z1
Radiation typeMo Kα
µ (mm1)3.05
Crystal size (mm)0.20 × 0.15 × 0.06
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionNumerical
(Clark & Reid, 1995)
Tmin, Tmax0.581, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
5329, 5057, 1604
Rint0.048
(sin θ/λ)max1)0.904
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.219, 0.98
No. of reflections5057
No. of parameters133
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.35, 1.91

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997), TEXSAN for Windows (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Rb1—O3i2.987 (3)Rb1—O53.096 (4)
Rb1—N2ii3.007 (3)Rb1—O13.137 (3)
O3i—Rb1—N2ii126.56 (8)O5—Rb1—O1iii118.29 (9)
O3i—Rb1—O578.94 (9)O3i—Rb1—O198.76 (8)
N2ii—Rb1—O570.89 (9)N2i—Rb1—O176.07 (8)
O3i—Rb1—O1iii81.24 (8)O5—Rb1—O161.71 (9)
N2ii—Rb1—O1iii76.07 (8)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y1, z; (iii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O3iv0.9301.5470 (10)2.468 (3)169.81 (12)
O5—H5A···N10.84 (9)2.07 (9)2.888 (3)168 (7)
O5—H5B···O4v0.82 (6)1.94 (6)2.753 (3)170.39 (5)
O2—H2···O5vi0.8201.7902.596 (6)165.68 (11)
Symmetry codes: (iv) x+1, y+2, z; (v) x, y1, z; (vi) x+2, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge Kırıkkale University Scientific Research Centre for financial support of this work.

References

First citationCametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDevi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1997). TEXSAN for Windows and MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610.  CAS Google Scholar
First citationRichard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126.  CrossRef Web of Science Google Scholar
First citationTombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Büyükgüngör, O. (2008b). Acta Cryst. E64, m491–m492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTombul, M., Güven, K. & Svoboda, I. (2008a). Acta Cryst. E64, m246–m247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYang, Z., Hu, M. & Wang, X. (2008). Acta Cryst. E64, m225.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m213-m214
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds