metal-organic compounds
catena-Poly[[diaquarubidium(I)](μ2-3-carboxypyrazine-2-carboxylato)(μ2-pyrazine-2,3-dicarboxylic acid)]
aDepartment of Chemistry, Faculty of Art and Science, University of Kırıkkale, Campus, Yahsihan, 71450 Kırıkkale, Turkey, and bDepartment of Physics, Faculty of Art and Science, University of Kirikkale, Campus, Yahsihan, 71450 Kırıkkale, Turkey
*Correspondence e-mail: mustafatombul38@gmail.com
The structural unit of the title compound, [Rb(C6H3N2O4)(C6H4N2O4)(H2O)2]n, consists of one rubidium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules. This formulation is repeated twice in the as the rubidium cation lies on an inversion centre. Each anion or acid molecule is linked to two rubidium cations, while the rubidium cation has close contacts to four symmetry-equivalent organic ligands, with two different coordination modes towards this cation. In addition, each rubidium cation is coordinated by two water O atoms, raising the to eight. One of the carboxyl groups of the acid holds its H atom, which forms a hydrogen bond to a coordinated water molecule. The other carboxyl group is deprotonated in half of the ligands and protonated in the other half, taking part in a strong O—H⋯O hydrogen bond disordered over an inversion centre. The stabilization of the is further assisted by O—H⋯O and O—H⋯N hydrogen-bonding interactions involving the water molecules and carboxylate O atoms.
Related literature
Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been used in the construction of multi-dimensional frameworks. A variety of metal–pyrazine-2,3-dicarboxylic acid complexes have been characterized, including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al., 2006), caesium (Tombul et al., 2007), potassium (Tombul et al., 2008a) and lithium (Tombul et al., 2008b) complexes. For Rb—N bond lengths, see: Yang et al. (2008); Cametti et al. (2005); Wiesbrock & Schmidbaur (2003); Shannon (1976); Devi & Vidyasagar (2000).
Experimental
Crystal data
|
Refinement
|
|
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997); cell MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809002001/hg2450sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809002001/hg2450Isup2.hkl
Rb~2~CO~3~ (462 mg, 2 mmol) was carefully added to an aqueous solution (20 ml) of pyrazine 2,3-dicarboxylic acid (672 mg, 4 mmol), until no further bubbles formed. The reaction mixture produced a colourless and clear solution which was stirred at 323 K for 200 min., until it solidified. The solid product was then redissolved in water (5 ml) and allowed to stand for three days at ambient temperature, after which transparent fine crystals were harvested.
The H5A atom of water molecule was located in a difference map. The position of H5B atom was obtained from difference map and then its position was refined with riding constraint.The other hydyrogen atoms (H1, H2, H3, H4) were repositioned geometrically. (C—H = 0.93 Å, O—H = 0.93 Å and O—H = 0.82 Å) and U\ĩso\~(H) (in the range 1.2–1.5 times U\~eq\~ of the parent atom).
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997); cell
MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997); data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2009).[Rb(C6H3N2O4)(C6H4N2O4)(H2O)2] | Z = 1 |
Mr = 456.72 | F(000) = 228 |
Triclinic, P1 | Dx = 1.830 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.452 (2) Å | Cell parameters from 25 reflections |
b = 7.8640 (15) Å | θ = 2.6–9.2° |
c = 8.3280 (12) Å | µ = 3.05 mm−1 |
α = 69.111 (12)° | T = 298 K |
β = 81.424 (19)° | Prism, colourless |
γ = 65.322 (18)° | 0.20 × 0.15 × 0.06 mm |
V = 414.32 (16) Å3 |
Rigaku AFC-7S diffractometer | 1604 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.048 |
Graphite monochromator | θmax = 40.0°, θmin = 2.6° |
ω–2θ scans | h = −13→13 |
Absorption correction: numerical (Clark & Reid, 1995) | k = −12→13 |
Tmin = 0.581, Tmax = 0.838 | l = 0→15 |
5329 measured reflections | 3 standard reflections every 150 reflections |
5057 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.219 | w = 1/[σ2(Fo2) + (0.0711P)2 + 0.5448P] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.002 |
5057 reflections | Δρmax = 1.35 e Å−3 |
133 parameters | Δρmin = −1.91 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.093 (11) |
[Rb(C6H3N2O4)(C6H4N2O4)(H2O)2] | γ = 65.322 (18)° |
Mr = 456.72 | V = 414.32 (16) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.452 (2) Å | Mo Kα radiation |
b = 7.8640 (15) Å | µ = 3.05 mm−1 |
c = 8.3280 (12) Å | T = 298 K |
α = 69.111 (12)° | 0.20 × 0.15 × 0.06 mm |
β = 81.424 (19)° |
Rigaku AFC-7S diffractometer | 1604 reflections with I > 2σ(I) |
Absorption correction: numerical (Clark & Reid, 1995) | Rint = 0.048 |
Tmin = 0.581, Tmax = 0.838 | 3 standard reflections every 150 reflections |
5329 measured reflections | intensity decay: none |
5057 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 1 restraint |
wR(F2) = 0.219 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.98 | Δρmax = 1.35 e Å−3 |
5057 reflections | Δρmin = −1.91 e Å−3 |
133 parameters |
Experimental. [analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995)] |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1 | 1.0000 | 0.0000 | 0.0000 | 0.0474 (3) | |
O1 | 0.9512 (4) | 0.1940 (5) | 0.2826 (4) | 0.0451 (7) | |
O2 | 0.8035 (5) | 0.3205 (6) | 0.4927 (4) | 0.0555 (9) | |
H2 | 0.9157 | 0.2906 | 0.5229 | 0.083* | |
O3 | 0.4264 (4) | 0.8765 (4) | 0.0673 (4) | 0.0472 (7) | |
H1 | 0.4742 | 0.9762 | 0.0256 | 0.071* | 0.50 |
O4 | 0.7256 (4) | 0.6622 (5) | 0.1716 (5) | 0.0497 (8) | |
O5 | 0.8582 (5) | −0.1900 (5) | 0.3618 (5) | 0.0520 (8) | |
N1 | 0.5456 (5) | 0.1950 (5) | 0.3236 (4) | 0.0367 (7) | |
N2 | 0.2959 (4) | 0.5834 (5) | 0.1521 (4) | 0.0333 (6) | |
C1 | 0.8065 (5) | 0.2816 (5) | 0.3520 (5) | 0.0335 (7) | |
C2 | 0.6004 (5) | 0.3460 (5) | 0.2892 (4) | 0.0307 (7) | |
C3 | 0.3632 (6) | 0.2399 (6) | 0.2753 (5) | 0.0390 (8) | |
H3 | 0.3190 | 0.1392 | 0.2980 | 0.047* | |
C4 | 0.2388 (6) | 0.4346 (6) | 0.1918 (5) | 0.0372 (8) | |
H4 | 0.1117 | 0.4612 | 0.1629 | 0.045* | |
C5 | 0.4790 (5) | 0.5392 (5) | 0.1997 (4) | 0.0297 (7) | |
C6 | 0.5508 (6) | 0.7044 (5) | 0.1459 (5) | 0.0344 (8) | |
H5A | 0.761 (12) | −0.087 (12) | 0.364 (10) | 0.10 (3)* | |
H5B | 0.816 (8) | −0.243 (8) | 0.316 (6) | 0.057 (16)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0433 (4) | 0.0367 (3) | 0.0434 (4) | −0.0028 (2) | −0.0063 (2) | −0.0051 (2) |
O1 | 0.0316 (14) | 0.0510 (17) | 0.0607 (19) | −0.0160 (13) | −0.0025 (13) | −0.0265 (15) |
O2 | 0.0423 (16) | 0.079 (2) | 0.0460 (17) | −0.0112 (16) | −0.0128 (13) | −0.0312 (17) |
O3 | 0.0395 (15) | 0.0302 (13) | 0.069 (2) | −0.0180 (12) | −0.0093 (14) | −0.0036 (13) |
O4 | 0.0393 (15) | 0.0428 (16) | 0.075 (2) | −0.0207 (13) | −0.0172 (14) | −0.0157 (15) |
O5 | 0.0471 (18) | 0.0489 (18) | 0.066 (2) | −0.0120 (15) | −0.0233 (15) | −0.0253 (16) |
N1 | 0.0360 (16) | 0.0293 (14) | 0.0426 (17) | −0.0139 (12) | −0.0078 (13) | −0.0053 (12) |
N2 | 0.0290 (14) | 0.0350 (15) | 0.0375 (16) | −0.0144 (12) | −0.0070 (12) | −0.0088 (12) |
C1 | 0.0304 (17) | 0.0321 (17) | 0.0395 (19) | −0.0143 (14) | −0.0057 (14) | −0.0089 (14) |
C2 | 0.0299 (16) | 0.0340 (17) | 0.0304 (17) | −0.0148 (14) | −0.0030 (13) | −0.0093 (13) |
C3 | 0.040 (2) | 0.0370 (19) | 0.046 (2) | −0.0223 (16) | −0.0045 (16) | −0.0094 (16) |
C4 | 0.0324 (17) | 0.043 (2) | 0.041 (2) | −0.0219 (16) | −0.0042 (15) | −0.0096 (16) |
C5 | 0.0307 (16) | 0.0325 (16) | 0.0300 (16) | −0.0147 (13) | −0.0050 (13) | −0.0100 (13) |
C6 | 0.0397 (19) | 0.0314 (17) | 0.0400 (19) | −0.0200 (15) | −0.0049 (15) | −0.0113 (14) |
Rb1—O3i | 2.987 (3) | O4—C6 | 1.234 (5) |
Rb1—O3ii | 2.987 (3) | O5—H5A | 0.84 (9) |
Rb1—N2ii | 3.007 (3) | O5—H5B | 0.82 (6) |
Rb1—N2i | 3.007 (3) | N1—C2 | 1.336 (5) |
Rb1—O5 | 3.096 (4) | N1—C3 | 1.340 (5) |
Rb1—O5iii | 3.096 (4) | N2—C4 | 1.326 (5) |
Rb1—O1iii | 3.137 (3) | N2—C5 | 1.344 (4) |
Rb1—O1 | 3.137 (3) | N2—Rb1iv | 3.007 (3) |
Rb1—H5B | 3.16 (5) | C1—C2 | 1.513 (5) |
O1—C1 | 1.204 (5) | C2—C5 | 1.389 (5) |
O2—C1 | 1.307 (5) | C3—C4 | 1.391 (6) |
O2—H2 | 0.8210 | C3—H3 | 0.9300 |
O3—C6 | 1.274 (5) | C4—H4 | 0.9300 |
O3—Rb1iv | 2.987 (3) | C5—C6 | 1.506 (5) |
O3—H1 | 0.9299 | ||
O3i—Rb1—O3ii | 180.00 (14) | O5iii—Rb1—H5B | 165.0 (3) |
O3i—Rb1—N2ii | 126.56 (8) | O1iii—Rb1—H5B | 104.1 (4) |
O3ii—Rb1—N2ii | 53.44 (8) | O1—Rb1—H5B | 76.0 (10) |
O3i—Rb1—N2i | 53.44 (8) | C1—O1—Rb1 | 131.4 (2) |
O3ii—Rb1—N2i | 126.56 (8) | C1—O2—H2 | 111.2 |
N2ii—Rb1—N2i | 180.0 | C6—O3—Rb1iv | 128.1 (2) |
O3i—Rb1—O5 | 78.94 (9) | C6—O3—H1 | 116.0 |
O3ii—Rb1—O5 | 101.06 (9) | Rb1iv—O3—H1 | 115.9 |
N2ii—Rb1—O5 | 70.89 (9) | Rb1—O5—H5A | 95 (5) |
N2i—Rb1—O5 | 109.11 (9) | Rb1—O5—H5B | 87 (4) |
O3i—Rb1—O5iii | 101.06 (9) | H5A—O5—H5B | 104 (6) |
O3ii—Rb1—O5iii | 78.94 (9) | C2—N1—C3 | 116.8 (3) |
N2ii—Rb1—O5iii | 109.11 (9) | C4—N2—C5 | 117.1 (3) |
N2i—Rb1—O5iii | 70.89 (9) | C4—N2—Rb1iv | 119.0 (2) |
O5—Rb1—O5iii | 180.00 (13) | C5—N2—Rb1iv | 123.5 (2) |
O3i—Rb1—O1iii | 81.24 (8) | O1—C1—O2 | 126.2 (3) |
O3ii—Rb1—O1iii | 98.76 (8) | O1—C1—C2 | 121.8 (3) |
N2ii—Rb1—O1iii | 76.07 (8) | O2—C1—C2 | 111.8 (3) |
N2i—Rb1—O1iii | 103.93 (8) | N1—C2—C5 | 121.9 (3) |
O5—Rb1—O1iii | 118.29 (9) | N1—C2—C1 | 113.0 (3) |
O5iii—Rb1—O1iii | 61.71 (9) | C5—C2—C1 | 125.1 (3) |
O3i—Rb1—O1 | 98.76 (8) | N1—C3—C4 | 121.2 (3) |
O3ii—Rb1—O1 | 81.24 (8) | N1—C3—H3 | 119.4 |
N2ii—Rb1—O1 | 103.93 (8) | C4—C3—H3 | 119.4 |
N2i—Rb1—O1 | 76.07 (8) | N2—C4—C3 | 122.0 (3) |
O5—Rb1—O1 | 61.71 (9) | N2—C4—H4 | 119.0 |
O5iii—Rb1—O1 | 118.29 (9) | C3—C4—H4 | 119.0 |
O1iii—Rb1—O1 | 180.00 (14) | N2—C5—C2 | 120.9 (3) |
O3i—Rb1—H5B | 70.4 (9) | N2—C5—C6 | 117.8 (3) |
O3ii—Rb1—H5B | 109.6 (9) | C2—C5—C6 | 121.2 (3) |
N2ii—Rb1—H5B | 69.3 (10) | O4—C6—O3 | 125.3 (3) |
N2i—Rb1—H5B | 110.7 (10) | O4—C6—C5 | 118.4 (3) |
O5—Rb1—H5B | 15.1 (10) | O3—C6—C5 | 116.1 (3) |
O3i—Rb1—O1—C1 | 4.0 (4) | Rb1iv—N2—C4—C3 | −174.7 (3) |
O3ii—Rb1—O1—C1 | −176.0 (4) | N1—C3—C4—N2 | 1.8 (7) |
N2ii—Rb1—O1—C1 | −127.2 (4) | C4—N2—C5—C2 | −1.2 (5) |
N2i—Rb1—O1—C1 | 52.8 (4) | Rb1iv—N2—C5—C2 | 171.6 (3) |
O5—Rb1—O1—C1 | −68.3 (4) | C4—N2—C5—C6 | 176.2 (3) |
O5iii—Rb1—O1—C1 | 111.7 (4) | Rb1iv—N2—C5—C6 | −11.0 (4) |
Rb1—O1—C1—O2 | 164.6 (3) | N1—C2—C5—N2 | 3.7 (6) |
Rb1—O1—C1—C2 | −10.4 (6) | C1—C2—C5—N2 | −178.5 (3) |
C3—N1—C2—C5 | −3.4 (6) | N1—C2—C5—C6 | −173.6 (3) |
C3—N1—C2—C1 | 178.7 (3) | C1—C2—C5—C6 | 4.2 (6) |
O1—C1—C2—N1 | 72.3 (5) | Rb1iv—O3—C6—O4 | −179.2 (3) |
O2—C1—C2—N1 | −103.3 (4) | Rb1iv—O3—C6—C5 | 5.3 (5) |
O1—C1—C2—C5 | −105.6 (5) | N2—C5—C6—O4 | −171.9 (4) |
O2—C1—C2—C5 | 78.8 (5) | C2—C5—C6—O4 | 5.5 (6) |
C2—N1—C3—C4 | 0.7 (6) | N2—C5—C6—O3 | 3.9 (5) |
C5—N2—C4—C3 | −1.5 (6) | C2—C5—C6—O3 | −178.7 (4) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y−1, z; (iii) −x+2, −y, −z; (iv) x−1, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O3v | 0.93 | 1.55 (1) | 2.468 (3) | 170 (1) |
O5—H5A···N1 | 0.84 (9) | 2.07 (9) | 2.888 (3) | 168 (7) |
O5—H5B···O4vi | 0.82 (6) | 1.94 (6) | 2.753 (3) | 170 (1) |
O2—H2···O5vii | 0.82 | 1.79 | 2.596 (6) | 166 (1) |
Symmetry codes: (v) −x+1, −y+2, −z; (vi) x, y−1, z; (vii) −x+2, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Rb(C6H3N2O4)(C6H4N2O4)(H2O)2] |
Mr | 456.72 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.452 (2), 7.8640 (15), 8.3280 (12) |
α, β, γ (°) | 69.111 (12), 81.424 (19), 65.322 (18) |
V (Å3) | 414.32 (16) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.05 |
Crystal size (mm) | 0.20 × 0.15 × 0.06 |
Data collection | |
Diffractometer | Rigaku AFC-7S diffractometer |
Absorption correction | Numerical (Clark & Reid, 1995) |
Tmin, Tmax | 0.581, 0.838 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5329, 5057, 1604 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.904 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.219, 0.98 |
No. of reflections | 5057 |
No. of parameters | 133 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.35, −1.91 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1997), TEXSAN for Windows (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), publCIF (Westrip, 2009).
Rb1—O3i | 2.987 (3) | Rb1—O5 | 3.096 (4) |
Rb1—N2ii | 3.007 (3) | Rb1—O1 | 3.137 (3) |
O3i—Rb1—N2ii | 126.56 (8) | O5—Rb1—O1iii | 118.29 (9) |
O3i—Rb1—O5 | 78.94 (9) | O3i—Rb1—O1 | 98.76 (8) |
N2ii—Rb1—O5 | 70.89 (9) | N2i—Rb1—O1 | 76.07 (8) |
O3i—Rb1—O1iii | 81.24 (8) | O5—Rb1—O1 | 61.71 (9) |
N2ii—Rb1—O1iii | 76.07 (8) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y−1, z; (iii) −x+2, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H1···O3iv | 0.930 | 1.5470 (10) | 2.468 (3) | 169.81 (12) |
O5—H5A···N1 | 0.84 (9) | 2.07 (9) | 2.888 (3) | 168 (7) |
O5—H5B···O4v | 0.82 (6) | 1.94 (6) | 2.753 (3) | 170.39 (5) |
O2—H2···O5vi | 0.820 | 1.790 | 2.596 (6) | 165.68 (11) |
Symmetry codes: (iv) −x+1, −y+2, −z; (v) x, y−1, z; (vi) −x+2, −y, −z+1. |
Acknowledgements
The authors gratefully acknowledge Kırıkkale University Scientific Research Centre for financial support of this work.
References
Cametti, M., Nissinen, M., Cort, A. D., Mandolini, L. & Rissanen, K. (2005). J. Am. Chem. Soc. 127, 3831–3837. Web of Science CSD CrossRef PubMed CAS Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Devi, R. N. & Vidyasagar, K. (2000). Inorg. Chem. 39, 2391–2396. CrossRef PubMed CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Molecular Structure Corporation (1997). TEXSAN for Windows and MSC/AFC Diffractometer Control Software. MSC, The Woodlands, Texas, USA. Google Scholar
Nepveu, F., Berkaoui, M. 'H. & Walz, L. (1993). Acta Cryst. C49, 1465–1466. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500. CAS Google Scholar
Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610. CAS Google Scholar
Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968. Web of Science CSD CrossRef CAS Google Scholar
Takusagawa, T. & Shimada, A. (1973). Chem. Lett. pp. 1121–1126. CrossRef Web of Science Google Scholar
Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2007). Acta Cryst. E63, m1783–m1784. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Büyükgüngör, O. (2008b). Acta Cryst. E64, m491–m492. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tombul, M., Güven, K. & Svoboda, I. (2008a). Acta Cryst. E64, m246–m247. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yang, Z., Hu, M. & Wang, X. (2008). Acta Cryst. E64, m225. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazine-2,3-dicarboxylic acid (Takusagawa & Shimada, 1973) and its dianion (Richard et al., 1973; Nepveu et al., 1993) have been reported to be well suited for the construction of multidimensional frameworks (nD, n = 1–3), owing to the presence of two adjacent carboxylate groups (O donor atoms) as substituents on the N-heterocyclic pyrazine ring (N donor atoms). In recent years, a variety of metal-organic compound of pyrazine-2,3-dicarboxylic acid have been characterized crystallographically owing to growing interest in supramolecular chemistry. Examples are including the calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b), sodium (Tombul et al., 2006), caesium (Tombul et al., 2007) and potassium (Tombul et al., 2008a) and lithium (Tombul et al., 2008b) complexes. Continuation our research on Group I dicarboxylates, we present here the synthesis and crystal structure of the hydrated polymeric rubidium complex, (I), formed with pyrazine-2,3-dicarboxylic acid.
The structural unit of the title compound, (I), contains one rubidium cation, one hydrogen pyrazine-2,3-dicarboxylate anion, one pyrazine-2,3-dicarboxylic acid molecule and two water molecules; this is twice in the asymmetric unit, since the rubidium ion lies on an inversion centre. This compound is isostructural with the corresponding potassium and caesium complexes, which are fully described previously (Tombul et al., 2008a; Tombul et al., 2007). Pyrazine-2,3-dicarboxylic acid is, on average, only half deprotonated at one of the carboxylate groups (O3ii and O3iii) complete the charge balance of the cation. Taking a larger domain of the crystal structure, the anion or acid molecule is linked to two rubidium cations, while the Rb+ cation is surrounded by four organic ligands, two of which are coordinated by employing both N and O atoms and the other two are coordinated solely by O atoms. In addition, each rubidium cation is coordinated by two water molecules, raising a coordination number of eight. The inner coordination sphere accommodates comprises six oxygen atoms (O1, O1i, O3ii, O3iii, O5 and O5i), together with two nitrogen atoms (N2ii and N2iii). The planes of the carboxylic/carboxylate groups (O1/C1/C2/O2) and (O3/C6/C5/O4) form dihedral angles with the ring (C2/C3/C4/C5/N1/N2) plane of 75.87 (16) and 6.65 (21), respectively. The Rb—O distances are in the range from 2.987 (3) Å to 3.137 (3) Å, which are well within the range reported in the literature for other rubidium complexes (Yang et al. 2008; Cametti et al., 2005; Wiesbrock & Schmidbaur, 2003; Shannon, 1976; Devi & Vidyasagar, 2000). Rb—N bond lengths also lie within the normal ranges found for similar bonds in the literature (Yang et al. 2008).
In the crystal structure, an asymmetric strong hydrogen bond occurs, linking carboxylate O atoms O—H···O [O···O = 2.468 (3) 2.596 (2) Å respectively]. Atom H1 is involved in this bond and maintains the charge balance within the structure. The water molecules are involved in normal, slightly bent, hydrogen bonds with hydrogen pyrazine-2,3-dicarboxylate (Table 2); the acceptors are carboxylate O atoms and N atoms of the aromatic ring. The polymeric complex is linked in a three-dimensional manner by further numerous intermolecular O—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 2)