metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ2O,N,N′,O′}manganese(III) perchlorate 18-crown-6 hemisolvate monohydrate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bCollege of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
*Correspondence e-mail: yumm@zzu.edu.cn

(Received 28 November 2008; accepted 30 December 2008; online 8 January 2009)

In the cation of the title compound, [Mn(C18H18N2O4)(H2O)2]ClO4·0.5C12H24O6·H2O, the MnIII ion is coordinated by two water O atoms, and two O atoms and two N atoms from the tetradentate 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]di­phenolate ligand, completing a distorted octa­hedral geometry. One O atom of the 18-crown-6-ether is disordered over two positions with occupancies of 0.70 (2) and 0.30 (2).

Related literature

For background on manganese-containing complexes, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1-69.]); Huang et al. (2002[Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.]); For related structures, see: Christou (1989[Christou, G. (1989). Acc. Chem. Res. 22, 328-335.]); Yu et al. (2007[Yu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670-5676.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C18H18N2O4)(H2O)2]ClO4·0.5C12H24O6·H2O

  • Mr = 666.94

  • Monoclinic, P 21 /n

  • a = 11.7287 (12) Å

  • b = 15.5814 (16) Å

  • c = 16.8158 (16) Å

  • β = 105.529 (2)°

  • V = 2960.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 272 (3) K

  • 0.40 × 0.35 × 0.25 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.857

  • 14526 measured reflections

  • 5198 independent reflections

  • 3798 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.239

  • S = 1.16

  • 5198 reflections

  • 382 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.71 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Manganese can exhibit several oxidation states and may provide the basis of models for active sites of biological systems such as the oxygen-evolving complex of photosystem and enzymes like superoxide dismutase, catalase, arginase (Garnovskii, et al., 1993; Huang, et al., 2002). The progress in elucidating the strutural and functional aspects of manganese-containing systems, has essentially been connected to the vast number of inorganic model complexes reported during the last few decades (Christou, 1989; Yu, et al., 2007). Here, the synthesis and crystal structure of the title complex (I) are reported.

The title complex (I) comprises one [Mn(C18H18N2O4)(H2O)2]+ cation, one perchlorate anion, half 18-crown-6 and one uncoordinated water molecule. (Fig. 1). The MnIII ion in each [Mn(C18H18N2O4)(H2O)2]+ cation is coordinated by two O atoms from water molecules, two O atoms and two N atoms from 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligands, completing a distorted octahedral geometry. Mn—N bond lengths are 1.973 (13), 1.969 (13) Å, respectly. The Mn—O bond distances to the 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligand are each 1.876 (10) Å. They are much shorter than the Mn—O bond distances of coordinated water (Mn1—O3 = 2.274 (11) Å, Mn1—O4 = 2.270 (12)Å).

Related literature top

For related literature, see: Christou (1989); Garnovskii et al. (1993); Huang et al. (2002); Yu et al. (2007). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see··· For related structures, see···; etc. Please revise this section as indicated.

Experimental top

A mixture of manganese(II) perchlorate (1 mmol, 253.8 mg), 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol, 326.4 mg) in 40 ml me thanol and 18-crown-6-ether (2 mmol, 528.6 mg) in water 40 ml was refluxed for one hour. The solution was cooled and filtrated. Crystals suitable for X-ray diffraction analysis were obtained by slow evaparation at room temperature for three weeks.

Refinement top

All H atoms were placed in geometrically calculated positions with C—H = 0.97 Å for CH2 H atoms, C—H = 0.93 Å for aromatic and CH H atoms and 0.82 Å for N—H H atoms and were refined isotropic with Uiso(H) = 1.2Ueq(C) of parent atom using a riding model. H atoms of H2O were located from difference maps and refined with a distance restraint O—H = 0.82 (1) Å. Uiso(H) = 1.2Ueq(O). DFIX restraints were applied to O···H distances of [1.97 (1) Å] H24a and O14 to remain 18-crown-6 molecule in normal format.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Diaqua{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- κ2O,N,N',O'}manganese(III) perchlorate 18-crown-6 hemisolvate monohydrate top
Crystal data top
[Mn(C18H18N2O4)(H2O)2]ClO4·0.5C12H24O6·H2OF(000) = 1392
Mr = 666.94Dx = 1.496 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5198 reflections
a = 11.7287 (12) Åθ = 1.8–25.0°
b = 15.5814 (16) ŵ = 0.61 mm1
c = 16.8158 (16) ÅT = 272 K
β = 105.529 (2)°Block, brown
V = 2960.9 (5) Å30.40 × 0.35 × 0.25 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5198 independent reflections
Radiation source: fine-focus sealed tube3798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.781, Tmax = 0.857k = 1818
14526 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.1233P)2 + 3.531P]
where P = (Fo2 + 2Fc2)/3
5198 reflections(Δ/σ)max = 0.039
382 parametersΔρmax = 1.71 e Å3
1 restraintΔρmin = 0.99 e Å3
Crystal data top
[Mn(C18H18N2O4)(H2O)2]ClO4·0.5C12H24O6·H2OV = 2960.9 (5) Å3
Mr = 666.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7287 (12) ŵ = 0.61 mm1
b = 15.5814 (16) ÅT = 272 K
c = 16.8158 (16) Å0.40 × 0.35 × 0.25 mm
β = 105.529 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3798 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.857Rint = 0.034
14526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0771 restraint
wR(F2) = 0.239H-atom parameters constrained
S = 1.16Δρmax = 1.71 e Å3
5198 reflectionsΔρmin = 0.99 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.8434 (2)0.55184 (14)0.55021 (12)0.0362 (9)
Cl10.7718 (11)0.9782 (5)0.5697 (5)0.121 (3)
O10.8797 (10)0.4346 (6)0.5501 (6)0.041 (2)
O20.8398 (9)0.5661 (6)0.4388 (6)0.040 (2)
O31.0384 (9)0.5863 (7)0.5967 (6)0.044 (3)
H1O31.09420.55020.60170.053*
H2O31.05560.63010.57210.053*
O40.6460 (10)0.5261 (9)0.5206 (8)0.061 (3)
H2040.60980.54510.47550.073*
H1040.65250.47300.52330.073*
O50.9243 (10)0.2794 (7)0.5141 (7)0.050 (3)
O60.8251 (11)0.5434 (7)0.2837 (6)0.053 (3)
O70.767 (3)1.0480 (16)0.616 (2)0.194 (13)
O80.747 (4)0.978 (3)0.4889 (16)0.235 (17)
O90.900 (5)0.962 (4)0.588 (3)0.29 (2)
O100.723 (4)0.9145 (17)0.598 (2)0.225 (16)
O110.996 (4)0.582 (3)0.901 (3)0.28 (2)
H1O10.92150.57440.88430.339*
H2O11.02920.53380.90010.339*
O120.4518 (12)0.6187 (9)0.6164 (8)0.070 (4)
O130.4881 (17)0.4407 (11)0.6454 (10)0.094 (5)
O140.501 (4)0.667 (3)0.468 (3)0.081 (5)0.30 (2)
O14'0.5994 (19)0.3432 (15)0.5508 (14)0.081 (5)0.70 (2)
N10.8421 (13)0.5487 (8)0.6673 (8)0.046 (3)
N20.8077 (13)0.6740 (8)0.5613 (8)0.048 (3)
C10.8610 (15)0.4826 (11)0.7146 (10)0.049 (4)
H10.85740.49010.76870.059*
C20.8873 (14)0.3984 (10)0.6905 (9)0.043 (4)
C30.8943 (12)0.3779 (9)0.6106 (9)0.038 (3)
C40.9174 (13)0.2922 (10)0.5928 (9)0.042 (4)
C50.9298 (16)0.2298 (11)0.6522 (11)0.054 (4)
H50.94340.17330.63920.065*
C60.9224 (17)0.2496 (12)0.7313 (12)0.061 (5)
H60.93140.20660.77090.074*
C70.9019 (16)0.3324 (12)0.7510 (11)0.055 (4)
H70.89740.34550.80400.066*
C80.940 (2)0.1927 (11)0.4890 (12)0.067 (5)
H8A1.01140.16940.52390.100*
H8B0.94380.19260.43280.100*
H8C0.87370.15840.49370.100*
C90.7780 (16)0.7286 (10)0.5019 (10)0.049 (4)
H90.76030.78390.51560.059*
C100.7695 (15)0.7122 (10)0.4161 (10)0.046 (4)
C110.7284 (17)0.7785 (11)0.3594 (11)0.057 (5)
H110.70830.83120.37780.068*
C120.7179 (18)0.7665 (12)0.2782 (12)0.065 (5)
H120.68930.81050.24090.077*
C130.7498 (16)0.6887 (12)0.2505 (10)0.056 (5)
H130.74350.68140.19460.067*
C140.7909 (14)0.6217 (10)0.3045 (9)0.044 (4)
C150.8008 (13)0.6326 (9)0.3896 (9)0.037 (3)
C160.815 (2)0.5265 (14)0.1996 (11)0.075 (6)
H16A0.73290.53050.16900.112*
H16B0.84340.46990.19380.112*
H16C0.86010.56780.17870.112*
C170.810 (3)0.6315 (14)0.6966 (13)0.090 (7)
H17A0.72870.62840.70040.108*
H17B0.86030.64220.75160.108*
C180.820 (3)0.6989 (15)0.6465 (13)0.096 (8)
H18A0.89600.72600.66830.115*
H18B0.75910.74100.64770.115*
C190.424 (3)0.726 (2)0.516 (2)0.117 (8)
H19A0.47490.77220.54440.140*
H19B0.35980.75280.47470.140*
C200.375 (3)0.6846 (18)0.5747 (17)0.101 (7)
H20A0.29840.66000.54660.121*
H20B0.36210.72620.61450.121*
C210.402 (2)0.5692 (18)0.6685 (16)0.089 (7)
H21A0.32700.54520.63680.107*
H21B0.38600.60550.71130.107*
C220.481 (2)0.5008 (17)0.7058 (14)0.087 (7)
H22A0.55850.52400.73150.105*
H22B0.45160.47310.74820.105*
C230.5581 (16)0.3749 (14)0.6760 (12)0.083 (7)
H23A0.52610.34570.71620.100*
H23B0.63540.39700.70500.100*
C240.5727 (16)0.3147 (14)0.6174 (12)0.104 (9)
H24A0.50040.28140.59930.124*
H24B0.63560.27540.64410.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0466 (15)0.0324 (13)0.0297 (13)0.0031 (9)0.0103 (10)0.0027 (9)
Cl10.209 (10)0.083 (5)0.078 (5)0.017 (5)0.051 (5)0.001 (4)
O10.055 (6)0.036 (5)0.034 (5)0.002 (5)0.013 (5)0.007 (4)
O20.053 (6)0.037 (5)0.029 (5)0.006 (5)0.008 (4)0.005 (4)
O30.047 (6)0.042 (6)0.043 (6)0.001 (5)0.011 (5)0.001 (5)
O40.047 (7)0.075 (8)0.058 (8)0.004 (6)0.009 (6)0.006 (6)
O50.066 (7)0.033 (6)0.049 (7)0.001 (5)0.015 (5)0.002 (5)
O60.075 (8)0.050 (7)0.033 (6)0.005 (6)0.014 (5)0.001 (5)
O70.27 (4)0.104 (18)0.22 (3)0.020 (19)0.08 (3)0.052 (18)
O80.33 (5)0.28 (4)0.079 (16)0.09 (3)0.03 (2)0.03 (2)
O90.28 (4)0.36 (5)0.23 (4)0.08 (4)0.08 (4)0.07 (3)
O100.43 (5)0.095 (16)0.22 (3)0.03 (2)0.20 (3)0.001 (18)
O110.27 (5)0.25 (5)0.30 (5)0.01 (4)0.04 (4)0.01 (4)
O120.068 (9)0.077 (9)0.060 (8)0.004 (7)0.008 (7)0.020 (7)
O130.121 (14)0.089 (12)0.064 (10)0.015 (10)0.010 (9)0.001 (8)
O140.063 (10)0.088 (12)0.091 (12)0.001 (10)0.021 (10)0.005 (10)
O14'0.063 (10)0.088 (12)0.091 (12)0.001 (10)0.021 (10)0.005 (10)
N10.065 (9)0.043 (7)0.032 (7)0.005 (6)0.017 (6)0.001 (6)
N20.069 (9)0.036 (7)0.040 (7)0.010 (6)0.017 (6)0.001 (6)
C10.059 (10)0.056 (10)0.036 (8)0.002 (8)0.018 (7)0.006 (8)
C20.044 (9)0.044 (9)0.040 (8)0.002 (7)0.010 (7)0.011 (7)
C30.031 (7)0.040 (8)0.041 (8)0.003 (6)0.005 (6)0.007 (6)
C40.040 (8)0.040 (8)0.043 (9)0.003 (7)0.008 (7)0.006 (7)
C50.062 (11)0.038 (9)0.062 (11)0.007 (8)0.014 (9)0.017 (8)
C60.068 (12)0.058 (11)0.060 (11)0.008 (9)0.020 (9)0.029 (9)
C70.061 (11)0.059 (11)0.047 (10)0.004 (9)0.017 (8)0.022 (8)
C80.088 (15)0.037 (9)0.072 (13)0.003 (9)0.017 (11)0.007 (9)
C90.065 (11)0.032 (8)0.053 (10)0.009 (7)0.021 (8)0.001 (7)
C100.053 (10)0.038 (8)0.046 (9)0.001 (7)0.012 (7)0.008 (7)
C110.068 (12)0.042 (9)0.061 (11)0.011 (8)0.017 (9)0.018 (8)
C120.077 (13)0.055 (11)0.058 (12)0.011 (10)0.011 (10)0.028 (9)
C130.066 (11)0.060 (11)0.038 (9)0.003 (9)0.009 (8)0.020 (8)
C140.047 (9)0.043 (9)0.039 (8)0.007 (7)0.008 (7)0.009 (7)
C150.036 (8)0.036 (8)0.037 (8)0.003 (6)0.006 (6)0.007 (6)
C160.113 (18)0.071 (13)0.040 (10)0.010 (12)0.019 (11)0.009 (9)
C170.16 (2)0.062 (12)0.057 (11)0.031 (13)0.049 (13)0.002 (10)
C180.17 (2)0.064 (12)0.061 (12)0.030 (14)0.039 (14)0.000 (10)
C190.118 (8)0.116 (9)0.116 (8)0.003 (3)0.030 (4)0.001 (3)
C200.095 (13)0.097 (14)0.103 (14)0.022 (12)0.014 (11)0.034 (12)
C210.080 (14)0.099 (16)0.091 (16)0.029 (13)0.027 (13)0.041 (14)
C220.107 (19)0.101 (19)0.059 (13)0.034 (16)0.030 (13)0.014 (13)
C230.074 (15)0.12 (2)0.061 (13)0.011 (14)0.020 (11)0.020 (14)
C240.093 (19)0.093 (19)0.12 (2)0.022 (15)0.024 (16)0.043 (17)
Geometric parameters (Å, º) top
Mn1—O21.876 (10)C6—C71.37 (3)
Mn1—O11.876 (10)C6—H60.9300
Mn1—N21.969 (13)C7—H70.9300
Mn1—N11.973 (12)C8—H8A0.9600
Mn1—O42.270 (12)C8—H8B0.9600
Mn1—O32.274 (11)C8—H8C0.9600
Cl1—O101.30 (3)C9—C101.44 (2)
Cl1—O81.31 (3)C9—H90.9300
Cl1—O71.34 (3)C10—C151.40 (2)
Cl1—O91.47 (5)C10—C111.40 (2)
O1—C31.323 (17)C11—C121.35 (3)
O2—C151.328 (17)C11—H110.9300
O3—H1O30.8500C12—C131.39 (3)
O3—H2O30.8500C12—H120.9300
O4—H2040.8189C13—C141.38 (2)
O4—H1040.8304C13—H130.9300
O5—C41.362 (18)C14—C151.41 (2)
O5—C81.44 (2)C16—H16A0.9600
O6—C141.359 (19)C16—H16B0.9600
O6—C161.41 (2)C16—H16C0.9600
O11—H1O10.8505C17—C181.37 (3)
O11—H2O10.8498C17—H17A0.9700
O12—C211.41 (3)C17—H17B0.9700
O12—C201.42 (3)C18—H18A0.9700
O13—C231.33 (2)C18—H18B0.9700
O13—C221.40 (3)C19—C201.43 (4)
O14—C24i1.50 (5)C19—O14'i1.53 (4)
O14—C191.65 (6)C19—H19A0.9700
O14'—C241.32 (3)C19—H19B0.9700
O14'—C19i1.53 (4)C20—H20A0.9700
N1—C11.28 (2)C20—H20B0.9700
N1—C171.47 (2)C21—C221.44 (4)
N2—C91.29 (2)C21—H21A0.9700
N2—C181.46 (2)C21—H21B0.9700
C1—C21.43 (2)C22—H22A0.9700
C1—H10.9300C22—H22B0.9700
C2—C31.41 (2)C23—C241.4037
C2—C71.42 (2)C23—H23A0.9700
C3—C41.41 (2)C23—H23B0.9700
C4—C51.37 (2)C24—O14i1.50 (5)
C5—C61.39 (3)C24—H24A0.9700
C5—H50.9300C24—H24B0.9700
O2—Mn1—O193.4 (4)C12—C11—H11119.8
O2—Mn1—N291.8 (5)C10—C11—H11119.7
O1—Mn1—N2174.8 (5)C11—C12—C13120.1 (16)
O2—Mn1—N1174.4 (5)C11—C12—H12119.9
O1—Mn1—N192.2 (5)C13—C12—H12119.9
N2—Mn1—N182.6 (5)C14—C13—C12121.2 (16)
O2—Mn1—O493.0 (5)C14—C13—H13119.4
O1—Mn1—O492.6 (5)C12—C13—H13119.4
N2—Mn1—O487.8 (6)O6—C14—C13125.7 (15)
N1—Mn1—O486.2 (5)O6—C14—C15114.7 (13)
O2—Mn1—O393.8 (4)C13—C14—C15119.6 (16)
O1—Mn1—O391.3 (4)O2—C15—C10124.6 (13)
N2—Mn1—O387.6 (5)O2—C15—C14117.3 (13)
N1—Mn1—O386.5 (5)C10—C15—C14118.1 (13)
O4—Mn1—O3171.9 (4)O6—C16—H16A109.4
O10—Cl1—O8112 (2)O6—C16—H16B109.5
O10—Cl1—O7108 (2)H16A—C16—H16B109.5
O8—Cl1—O7125 (3)O6—C16—H16C109.5
O10—Cl1—O9109 (3)H16A—C16—H16C109.5
O8—Cl1—O998 (3)H16B—C16—H16C109.5
O7—Cl1—O9102 (3)C18—C17—N1113.2 (17)
C3—O1—Mn1129.2 (10)C18—C17—H17A108.9
C15—O2—Mn1128.8 (9)N1—C17—H17A108.9
Mn1—O3—H1O3123.7C18—C17—H17B108.9
Mn1—O3—H2O3111.7N1—C17—H17B108.9
H1O3—O3—H2O3107.7H17A—C17—H17B107.8
Mn1—O4—H204112.6C17—C18—N2113.6 (19)
Mn1—O4—H10495.2C17—C18—H18A108.8
H204—O4—H104115.4N2—C18—H18A108.9
C4—O5—C8117.8 (13)C17—C18—H18B108.8
C14—O6—C16118.2 (14)N2—C18—H18B108.8
H1O1—O11—H2O1107.8H18A—C18—H18B107.7
C21—O12—C20113 (2)C20—C19—O14'i99 (3)
C23—O13—C22113 (2)C20—C19—O14117 (3)
C24i—O14—C1996 (3)C20—C19—H19A107.2
C24—O14'—C19i110 (2)O14'i—C19—H19A148.9
C1—N1—C17120.9 (14)O14—C19—H19A108.0
C1—N1—Mn1126.3 (11)C20—C19—H19B108.0
C17—N1—Mn1112.7 (11)O14'i—C19—H19B80.4
C9—N2—C18121.6 (14)O14—C19—H19B108.0
C9—N2—Mn1125.9 (11)H19A—C19—H19B106.8
C18—N2—Mn1112.5 (11)C19—C20—O12110 (2)
N1—C1—C2125.1 (14)C19—C20—H20A109.7
N1—C1—H1117.5O12—C20—H20A109.7
C2—C1—H1117.4C19—C20—H20B109.5
C3—C2—C1123.5 (13)O12—C20—H20B109.6
C3—C2—C7119.4 (15)H20A—C20—H20B108.1
C1—C2—C7117.1 (15)O12—C21—C22110 (2)
O1—C3—C2123.7 (14)O12—C21—H21A109.6
O1—C3—C4117.5 (13)C22—C21—H21A109.6
C2—C3—C4118.8 (13)O12—C21—H21B109.5
O5—C4—C5125.4 (15)C22—C21—H21B109.6
O5—C4—C3114.2 (13)H21A—C21—H21B108.1
C5—C4—C3120.4 (15)O13—C22—C21110 (2)
C4—C5—C6121.1 (16)O13—C22—H22A109.7
C4—C5—H5119.5C21—C22—H22A109.7
C6—C5—H5119.4O13—C22—H22B109.8
C7—C6—C5120.0 (16)C21—C22—H22B109.7
C7—C6—H6120.0H22A—C22—H22B108.2
C5—C6—H6120.0O13—C23—C24115.01
C6—C7—C2120.3 (17)O13—C23—H23A108.4
C6—C7—H7119.9C24—C23—H23A108.5
C2—C7—H7119.9O13—C23—H23B108.7
O5—C8—H8A109.5C24—C23—H23B108.5
O5—C8—H8B109.5H23A—C23—H23B107.5
H8A—C8—H8B109.5O14i—C24—O14'47 (2)
O5—C8—H8C109.5O14i—C24—C23113 (2)
H8A—C8—H8C109.5O14'—C24—C23118.2 (14)
H8B—C8—H8C109.5O14i—C24—H24A64.5
N2—C9—C10126.2 (14)O14'—C24—H24A107.3
N2—C9—H9116.9C23—C24—H24A108.5
C10—C9—H9116.9O14i—C24—H24B137.7
C15—C10—C11120.5 (15)O14'—C24—H24B106.3
C15—C10—C9121.5 (14)C23—C24—H24B108.5
C11—C10—C9118.0 (15)H24A—C24—H24B107.5
C12—C11—C10120.5 (17)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C18H18N2O4)(H2O)2]ClO4·0.5C12H24O6·H2O
Mr666.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)272
a, b, c (Å)11.7287 (12), 15.5814 (16), 16.8158 (16)
β (°) 105.529 (2)
V3)2960.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.40 × 0.35 × 0.25
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.781, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
14526, 5198, 3798
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.239, 1.16
No. of reflections5198
No. of parameters382
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.71, 0.99

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 50873093).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristou, G. (1989). Acc. Chem. Res. 22, 328–335.  CrossRef CAS Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationHuang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64–66.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670–5676.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds