organic compounds
1-Benzoyl-3-(5-quinolyl)thiourea
aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, bDepartment of Chemistry of Huaiyin Teachers College, Huaian 223300, People's Republic of China, and cJangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaian 223300, People's Republic of China
*Correspondence e-mail: wangyyx2008@163.com
The title compound, C17H13N3OS, was obtained by the reaction of benzoyl chloride, ammonium thiocyanate and 5-aminoquinoline in the presence of polyethyleneglycol-400 (PEG-400) as a phase-transfer catalyst. The compound crystallized as discrete molecules linked by N—H⋯N and C—H⋯N hydrogen bonds involving all the potential donors, generating sheets parallel to (100). An intramolecular N—H⋯O bond is also present.
Related literature
For the biological activity of acyl thioureas, see: Hackmann (1960); Sarkis & Faisal (1985). For their application in the synthesis of supramolecular complexes, see: Pluta & Sadlej (2001); Kaminsky et al. (2002). For a related structure, see: Xue et al. (2004).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809000932/hg2453sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000932/hg2453Isup2.hkl
The title compound was synthesized as following. A mixture of benzoyl chloride (1400 mg, 10 mmol), ammonium thiocyanate (1140 mg, 15 mmol), 5-aminoquinoline (1300 mg, 9 mmol) and dichloromethane (50 ml) in the presence of PEG-400 (1200 mg, 3 mmol) as phase transfer catalyst at room temperature for 8h with stirring. The reaction mixture was evaporated to give a residue. Singles crystals suitable for X-ray analysis were obtained by slow evaporation of a mixture solution of dichloromethane and ethanol.
The atom H6 attached to N1 and the atom H7 attached to N2 was located in a difference Fourier map and refined with N—H distance restrained to 0.87 (2)Å, and with Uiso(H) = 0.85Ueq(N) and Uiso(H) = 1.91Ueq(N) All H atoms bound to carbon were refined using riding models with d(C—H) = 0.93Å and Uiso(H) = 1.2Ueq(C).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C17H13N3OS | F(000) = 640 |
Mr = 307.36 | Dx = 1.364 Mg m−3 |
Monoclinic, P21/n | Melting point = 446.2–446.7 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 5.0875 (1) Å | Cell parameters from 3090 reflections |
b = 16.1718 (4) Å | θ = 2.2–22.4° |
c = 18.2847 (4) Å | µ = 0.22 mm−1 |
β = 95.892 (2)° | T = 296 K |
V = 1496.41 (6) Å3 | Rod, yellow |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
Enraf–Nonius CAD-4 diffractometer | 2184 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 27.4°, θmin = 1.7° |
ω/2θ scans | h = −6→6 |
Absorption correction: ψ scan (North et al., 1968) | k = −20→18 |
Tmin = 0.939, Tmax = 0.969 | l = −23→23 |
13322 measured reflections | 3 standard reflections every 97 reflections |
3411 independent reflections | intensity decay: 2.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4696P] where P = (Fo2 + 2Fc2)/3 |
3411 reflections | (Δ/σ)max < 0.001 |
207 parameters | Δρmax = 0.30 e Å−3 |
2 restraints | Δρmin = −0.22 e Å−3 |
C17H13N3OS | V = 1496.41 (6) Å3 |
Mr = 307.36 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 5.0875 (1) Å | µ = 0.22 mm−1 |
b = 16.1718 (4) Å | T = 296 K |
c = 18.2847 (4) Å | 0.40 × 0.30 × 0.20 mm |
β = 95.892 (2)° |
Enraf–Nonius CAD-4 diffractometer | 2184 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.032 |
Tmin = 0.939, Tmax = 0.969 | 3 standard reflections every 97 reflections |
13322 measured reflections | intensity decay: 2.1% |
3411 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 2 restraints |
wR(F2) = 0.129 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.30 e Å−3 |
3411 reflections | Δρmin = −0.22 e Å−3 |
207 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.00333 (14) | 0.14855 (4) | 0.20925 (4) | 0.0704 (2) | |
O1 | 0.5088 (4) | 0.09876 (10) | 0.02568 (9) | 0.0724 (5) | |
N1 | 0.2883 (4) | 0.17950 (11) | 0.10117 (10) | 0.0503 (4) | |
N2 | 0.2175 (4) | 0.04129 (12) | 0.12428 (10) | 0.0602 (5) | |
C17 | 0.2711 (4) | −0.05169 (12) | 0.23117 (11) | 0.0442 (5) | |
C13 | 0.1919 (4) | −0.12237 (12) | 0.26802 (11) | 0.0482 (5) | |
C7 | 0.4431 (5) | 0.16753 (13) | 0.04478 (11) | 0.0524 (5) | |
N3 | 0.3173 (4) | −0.14846 (11) | 0.33306 (10) | 0.0579 (5) | |
C1 | 0.5204 (4) | 0.24240 (13) | 0.00465 (10) | 0.0470 (5) | |
C16 | 0.4940 (4) | −0.00801 (14) | 0.26304 (13) | 0.0558 (6) | |
H13 | 0.5538 | 0.0389 | 0.2404 | 0.067* | |
C8 | 0.1748 (4) | 0.11985 (13) | 0.14277 (11) | 0.0511 (5) | |
C12 | −0.0297 (5) | −0.16872 (13) | 0.23615 (14) | 0.0582 (6) | |
H10 | −0.0850 | −0.2156 | 0.2597 | 0.070* | |
C9 | 0.1265 (4) | −0.02866 (13) | 0.16352 (12) | 0.0520 (5) | |
C11 | −0.1587 (5) | −0.14385 (14) | 0.17142 (14) | 0.0607 (6) | |
H9 | −0.3023 | −0.1745 | 0.1508 | 0.073* | |
C2 | 0.7141 (5) | 0.23490 (16) | −0.04248 (13) | 0.0650 (6) | |
H1 | 0.8019 | 0.1848 | −0.0458 | 0.078* | |
C15 | 0.6203 (5) | −0.03616 (15) | 0.32799 (13) | 0.0621 (6) | |
H12 | 0.7686 | −0.0090 | 0.3502 | 0.075* | |
C14 | 0.5228 (5) | −0.10613 (16) | 0.36003 (13) | 0.0637 (6) | |
H11 | 0.6111 | −0.1242 | 0.4042 | 0.076* | |
C6 | 0.3941 (5) | 0.31702 (15) | 0.00781 (13) | 0.0658 (7) | |
H5 | 0.2610 | 0.3232 | 0.0386 | 0.079* | |
C5 | 0.4626 (6) | 0.38332 (17) | −0.03438 (14) | 0.0784 (8) | |
H4 | 0.3787 | 0.4340 | −0.0308 | 0.094* | |
C4 | 0.6519 (6) | 0.37434 (18) | −0.08094 (14) | 0.0747 (7) | |
H3 | 0.6947 | 0.4184 | −0.1102 | 0.090* | |
C10 | −0.0822 (5) | −0.07367 (14) | 0.13504 (13) | 0.0599 (6) | |
H8 | −0.1754 | −0.0578 | 0.0909 | 0.072* | |
C3 | 0.7785 (5) | 0.30086 (19) | −0.08470 (15) | 0.0764 (8) | |
H2 | 0.9100 | 0.2950 | −0.1161 | 0.092* | |
H6 | 0.268 (4) | 0.2277 (10) | 0.1143 (10) | 0.043 (6)* | |
H7 | 0.324 (5) | 0.0371 (19) | 0.0876 (14) | 0.115 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0932 (5) | 0.0458 (4) | 0.0790 (4) | 0.0004 (3) | 0.0421 (4) | 0.0001 (3) |
O1 | 0.1085 (14) | 0.0473 (10) | 0.0671 (10) | 0.0049 (9) | 0.0359 (10) | −0.0030 (8) |
N1 | 0.0701 (12) | 0.0363 (10) | 0.0461 (10) | 0.0012 (9) | 0.0131 (9) | 0.0013 (8) |
N2 | 0.0852 (15) | 0.0426 (11) | 0.0558 (12) | 0.0015 (10) | 0.0220 (11) | 0.0056 (9) |
C17 | 0.0501 (11) | 0.0343 (10) | 0.0503 (11) | 0.0001 (9) | 0.0159 (9) | −0.0048 (9) |
C13 | 0.0589 (13) | 0.0362 (11) | 0.0522 (12) | 0.0016 (9) | 0.0189 (10) | −0.0032 (9) |
C7 | 0.0653 (14) | 0.0480 (13) | 0.0443 (11) | 0.0010 (10) | 0.0080 (10) | −0.0033 (9) |
N3 | 0.0709 (13) | 0.0490 (11) | 0.0550 (11) | 0.0006 (10) | 0.0123 (10) | 0.0033 (9) |
C1 | 0.0554 (12) | 0.0489 (12) | 0.0368 (10) | −0.0039 (10) | 0.0048 (9) | 0.0001 (9) |
C16 | 0.0594 (14) | 0.0449 (13) | 0.0664 (14) | −0.0077 (10) | 0.0227 (12) | −0.0067 (11) |
C8 | 0.0664 (14) | 0.0387 (12) | 0.0493 (11) | 0.0025 (10) | 0.0108 (10) | 0.0039 (9) |
C12 | 0.0687 (15) | 0.0393 (12) | 0.0692 (15) | −0.0076 (10) | 0.0199 (12) | −0.0077 (10) |
C9 | 0.0642 (14) | 0.0401 (12) | 0.0536 (12) | 0.0027 (10) | 0.0154 (11) | −0.0035 (10) |
C11 | 0.0597 (14) | 0.0515 (14) | 0.0711 (15) | −0.0089 (11) | 0.0068 (12) | −0.0150 (12) |
C2 | 0.0682 (15) | 0.0633 (16) | 0.0668 (15) | 0.0042 (12) | 0.0220 (13) | 0.0018 (12) |
C15 | 0.0542 (14) | 0.0669 (16) | 0.0655 (15) | −0.0073 (12) | 0.0077 (12) | −0.0149 (12) |
C14 | 0.0670 (16) | 0.0664 (16) | 0.0581 (14) | 0.0028 (13) | 0.0084 (12) | 0.0030 (12) |
C6 | 0.0821 (17) | 0.0613 (15) | 0.0584 (14) | 0.0085 (13) | 0.0276 (13) | 0.0110 (11) |
C5 | 0.104 (2) | 0.0613 (16) | 0.0740 (16) | 0.0143 (15) | 0.0295 (16) | 0.0208 (13) |
C4 | 0.0806 (18) | 0.0751 (19) | 0.0706 (16) | −0.0080 (15) | 0.0187 (14) | 0.0243 (14) |
C10 | 0.0687 (15) | 0.0509 (14) | 0.0597 (14) | 0.0019 (12) | 0.0054 (12) | −0.0091 (11) |
C3 | 0.0728 (17) | 0.086 (2) | 0.0761 (17) | −0.0040 (15) | 0.0362 (14) | 0.0121 (15) |
S1—C8 | 1.655 (2) | C12—C11 | 1.354 (3) |
O1—C7 | 1.223 (2) | C12—H10 | 0.9300 |
N1—C7 | 1.374 (3) | C9—C10 | 1.347 (3) |
N1—C8 | 1.390 (3) | C11—C10 | 1.391 (3) |
N1—H6 | 0.826 (15) | C11—H9 | 0.9300 |
N2—C8 | 1.338 (3) | C2—C3 | 1.376 (3) |
N2—C9 | 1.441 (3) | C2—H1 | 0.9300 |
N2—H7 | 0.909 (17) | C15—C14 | 1.389 (3) |
C17—C13 | 1.407 (3) | C15—H12 | 0.9300 |
C17—C16 | 1.410 (3) | C14—H11 | 0.9300 |
C17—C9 | 1.422 (3) | C6—C5 | 1.386 (3) |
C13—N3 | 1.358 (3) | C6—H5 | 0.9300 |
C13—C12 | 1.427 (3) | C5—C4 | 1.357 (4) |
C7—C1 | 1.490 (3) | C5—H4 | 0.9300 |
N3—C14 | 1.304 (3) | C4—C3 | 1.357 (4) |
C1—C6 | 1.371 (3) | C4—H3 | 0.9300 |
C1—C2 | 1.379 (3) | C10—H8 | 0.9300 |
C16—C15 | 1.369 (3) | C3—H2 | 0.9300 |
C16—H13 | 0.9300 | ||
C7—N1—C8 | 127.96 (19) | C10—C9—N2 | 120.8 (2) |
C7—N1—H6 | 116.7 (14) | C17—C9—N2 | 118.35 (19) |
C8—N1—H6 | 115.2 (14) | C12—C11—C10 | 121.7 (2) |
C8—N2—C9 | 123.42 (19) | C12—C11—H9 | 119.1 |
C8—N2—H7 | 112 (2) | C10—C11—H9 | 119.1 |
C9—N2—H7 | 124 (2) | C3—C2—C1 | 120.6 (2) |
C13—C17—C16 | 117.8 (2) | C3—C2—H1 | 119.7 |
C13—C17—C9 | 118.79 (19) | C1—C2—H1 | 119.7 |
C16—C17—C9 | 123.39 (19) | C16—C15—C14 | 118.7 (2) |
N3—C13—C17 | 122.7 (2) | C16—C15—H12 | 120.6 |
N3—C13—C12 | 118.3 (2) | C14—C15—H12 | 120.6 |
C17—C13—C12 | 118.9 (2) | N3—C14—C15 | 125.1 (2) |
O1—C7—N1 | 122.5 (2) | N3—C14—H11 | 117.4 |
O1—C7—C1 | 120.3 (2) | C15—C14—H11 | 117.4 |
N1—C7—C1 | 117.14 (19) | C1—C6—C5 | 120.8 (2) |
C14—N3—C13 | 117.0 (2) | C1—C6—H5 | 119.6 |
C6—C1—C2 | 118.1 (2) | C5—C6—H5 | 119.6 |
C6—C1—C7 | 123.1 (2) | C4—C5—C6 | 120.1 (3) |
C2—C1—C7 | 118.6 (2) | C4—C5—H4 | 119.9 |
C15—C16—C17 | 118.6 (2) | C6—C5—H4 | 119.9 |
C15—C16—H13 | 120.7 | C3—C4—C5 | 119.8 (2) |
C17—C16—H13 | 120.7 | C3—C4—H3 | 120.1 |
N2—C8—N1 | 115.68 (19) | C5—C4—H3 | 120.1 |
N2—C8—S1 | 124.54 (17) | C9—C10—C11 | 120.3 (2) |
N1—C8—S1 | 119.78 (16) | C9—C10—H8 | 119.9 |
C11—C12—C13 | 119.5 (2) | C11—C10—H8 | 119.9 |
C11—C12—H10 | 120.2 | C4—C3—C2 | 120.6 (2) |
C13—C12—H10 | 120.2 | C4—C3—H2 | 119.7 |
C10—C9—C17 | 120.8 (2) | C2—C3—H2 | 119.7 |
C16—C17—C13—N3 | 1.5 (3) | C16—C17—C9—C10 | 178.8 (2) |
C9—C17—C13—N3 | −179.51 (18) | C13—C17—C9—N2 | −176.79 (18) |
C16—C17—C13—C12 | −178.68 (18) | C16—C17—C9—N2 | 2.1 (3) |
C9—C17—C13—C12 | 0.3 (3) | C8—N2—C9—C10 | 105.1 (3) |
C8—N1—C7—O1 | −2.7 (4) | C8—N2—C9—C17 | −78.2 (3) |
C8—N1—C7—C1 | 174.7 (2) | C13—C12—C11—C10 | −0.4 (3) |
C17—C13—N3—C14 | −1.8 (3) | C6—C1—C2—C3 | 0.3 (3) |
C12—C13—N3—C14 | 178.4 (2) | C7—C1—C2—C3 | 175.3 (2) |
O1—C7—C1—C6 | 160.1 (2) | C17—C16—C15—C14 | −0.4 (3) |
N1—C7—C1—C6 | −17.3 (3) | C13—N3—C14—C15 | 1.0 (4) |
O1—C7—C1—C2 | −14.6 (3) | C16—C15—C14—N3 | 0.1 (4) |
N1—C7—C1—C2 | 168.0 (2) | C2—C1—C6—C5 | −1.0 (4) |
C13—C17—C16—C15 | −0.4 (3) | C7—C1—C6—C5 | −175.7 (2) |
C9—C17—C16—C15 | −179.3 (2) | C1—C6—C5—C4 | 1.7 (4) |
C9—N2—C8—N1 | 176.8 (2) | C6—C5—C4—C3 | −1.6 (4) |
C9—N2—C8—S1 | −4.2 (3) | C17—C9—C10—C11 | −0.3 (3) |
C7—N1—C8—N2 | −1.6 (3) | N2—C9—C10—C11 | 176.3 (2) |
C7—N1—C8—S1 | 179.31 (18) | C12—C11—C10—C9 | 0.6 (4) |
N3—C13—C12—C11 | 179.8 (2) | C5—C4—C3—C2 | 0.9 (4) |
C17—C13—C12—C11 | 0.0 (3) | C1—C2—C3—C4 | −0.3 (4) |
C13—C17—C9—C10 | −0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H6···N3i | 0.83 (2) | 2.28 (2) | 3.100 (3) | 171 (2) |
N2—H7···O1 | 0.91 (3) | 1.84 (3) | 2.619 (3) | 143 (3) |
C6—H5···N3i | 0.93 | 2.46 | 3.252 (3) | 143 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C17H13N3OS |
Mr | 307.36 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 296 |
a, b, c (Å) | 5.0875 (1), 16.1718 (4), 18.2847 (4) |
β (°) | 95.892 (2) |
V (Å3) | 1496.41 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.939, 0.969 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13322, 3411, 2184 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.648 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.129, 1.04 |
No. of reflections | 3411 |
No. of parameters | 207 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.22 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H6···N3i | 0.825 (17) | 2.283 (17) | 3.100 (3) | 170.5 (18) |
N2—H7···O1 | 0.91 (3) | 1.84 (3) | 2.619 (3) | 143 (3) |
C6—H5···N3i | 0.9300 | 2.4600 | 3.252 (3) | 143.00 |
Symmetry code: (i) −x+1/2, y+1/2, −z+1/2. |
Acknowledgements
We are grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers College (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.
References
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Hackmann, J. T. (1960). US Patent No. 2 923 656. Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9–15. Web of Science CSD CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Pluta, T. & Sadlej, A. J. (2001). J. Chem. Phys. 114, 136–146. Web of Science CrossRef CAS Google Scholar
Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137–140. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, S. J., Duan, L. P., Ke, S. Y. & Zhu, J. M. (2004). Chin. J. Struct. Chem. 23, 441–444. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Acyl thioureas have extensive biological activities such as bacteriostasis, weeding (Hackmann, 1960) and plant growth regulating (Sarkis & Faisal, 1985). In addition, acyl thioureas are excellent ligands, and have been widely applied in synthesis of supramolecular complexes (Pluta & Sadlej, 2001; Kaminsky et al., 2002). The title compound, (I) crystallizes as discrete molecules (Fig. 1). The full molecule is a big conjugated system because the bond lengths of C1—C7, C7—N1, C8—N1, C8—N2 and C9—N2 become shorter than standard values, and the bond lengths of C7—O1 and C8—S1 become longer than standard values. In (I) the torsion angle for C17—C9—N2—C8 of -78.2 (3)° indicates the quinoline ring is approximately orthogonal to the rest of the molecule. The molecules in (I) are linked by N1—H6···N3, N2—H7···O1 and C6—H5···N3 hydrogen bonds involving all the potential donors, generating sheets parallel to (100), as shown in Fig. 2. In addition, the bond lengths of S—C (1.655 (2)Å) and O—C(1.223 (2)Å) in (I) are longer than the bond lengths of S—C(1.6503Å) and O—C(1.201Å) in N-(4,6-dimethylpyrimidin-2-ylcarbamothioyl)benzamide (Xue et al., 2004)