organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Benzoyl-3-(5-quinol­yl)thio­urea

aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, bDepartment of Chemistry of Huaiyin Teachers College, Huaian 223300, People's Republic of China, and cJangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaian 223300, People's Republic of China
*Correspondence e-mail: wangyyx2008@163.com

(Received 1 December 2008; accepted 8 January 2009; online 14 January 2009)

The title compound, C17H13N3OS, was obtained by the reaction of benzoyl chloride, ammonium thio­cyanate and 5-amino­quinoline in the presence of polyethyl­eneglycol-400 (PEG-400) as a phase-transfer catalyst. The compound crystallized as discrete mol­ecules linked by N—H⋯N and C—H⋯N hydrogen bonds involving all the potential donors, generating sheets parallel to (100). An intramolecular N—H⋯O bond is also present.

Related literature

For the biological activity of acyl thio­ureas, see: Hackmann (1960[Hackmann, J. T. (1960). US Patent No. 2 923 656.]); Sarkis & Faisal (1985[Sarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137-140.]). For their application in the synthesis of supra­molecular complexes, see: Pluta & Sadlej (2001[Pluta, T. & Sadlej, A. J. (2001). J. Chem. Phys. 114, 136-146.]); Kaminsky et al. (2002[Kaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9-15.]). For a related structure, see: Xue et al. (2004[Xue, S. J., Duan, L. P., Ke, S. Y. & Zhu, J. M. (2004). Chin. J. Struct. Chem. 23, 441-444.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N3OS

  • Mr = 307.36

  • Monoclinic, P 21 /n

  • a = 5.0875 (1) Å

  • b = 16.1718 (4) Å

  • c = 18.2847 (4) Å

  • β = 95.892 (2)°

  • V = 1496.41 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.939, Tmax = 0.969

  • 13322 measured reflections

  • 3411 independent reflections

  • 2184 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 97 reflections intensity decay: 2.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.04

  • 3411 reflections

  • 207 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H6⋯N3i 0.825 (17) 2.283 (17) 3.100 (3) 170.5 (18)
N2—H7⋯O1 0.91 (3) 1.84 (3) 2.619 (3) 143 (3)
C6—H5⋯N3i 0.93 2.46 3.252 (3) 143
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acyl thioureas have extensive biological activities such as bacteriostasis, weeding (Hackmann, 1960) and plant growth regulating (Sarkis & Faisal, 1985). In addition, acyl thioureas are excellent ligands, and have been widely applied in synthesis of supramolecular complexes (Pluta & Sadlej, 2001; Kaminsky et al., 2002). The title compound, (I) crystallizes as discrete molecules (Fig. 1). The full molecule is a big conjugated system because the bond lengths of C1—C7, C7—N1, C8—N1, C8—N2 and C9—N2 become shorter than standard values, and the bond lengths of C7—O1 and C8—S1 become longer than standard values. In (I) the torsion angle for C17—C9—N2—C8 of -78.2 (3)° indicates the quinoline ring is approximately orthogonal to the rest of the molecule. The molecules in (I) are linked by N1—H6···N3, N2—H7···O1 and C6—H5···N3 hydrogen bonds involving all the potential donors, generating sheets parallel to (100), as shown in Fig. 2. In addition, the bond lengths of S—C (1.655 (2)Å) and O—C(1.223 (2)Å) in (I) are longer than the bond lengths of S—C(1.6503Å) and O—C(1.201Å) in N-(4,6-dimethylpyrimidin-2-ylcarbamothioyl)benzamide (Xue et al., 2004)

Related literature top

For the biological activity of acyl thioureas, see: Hackmann (1960); Sarkis & Faisal (1985). For their application in the synthesis of supramolecular complexes, see: Pluta & Sadlej (2001); Kaminsky et al. (2002). For a related structure, see: Xue et al. (2004).

Experimental top

The title compound was synthesized as following. A mixture of benzoyl chloride (1400 mg, 10 mmol), ammonium thiocyanate (1140 mg, 15 mmol), 5-aminoquinoline (1300 mg, 9 mmol) and dichloromethane (50 ml) in the presence of PEG-400 (1200 mg, 3 mmol) as phase transfer catalyst at room temperature for 8h with stirring. The reaction mixture was evaporated to give a residue. Singles crystals suitable for X-ray analysis were obtained by slow evaporation of a mixture solution of dichloromethane and ethanol.

Refinement top

The atom H6 attached to N1 and the atom H7 attached to N2 was located in a difference Fourier map and refined with N—H distance restrained to 0.87 (2)Å, and with Uiso(H) = 0.85Ueq(N) and Uiso(H) = 1.91Ueq(N) All H atoms bound to carbon were refined using riding models with d(C—H) = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis, showing two layers of molecules connected by van der waals.
1-Benzoyl-3-(5-quinolyl)thiourea top
Crystal data top
C17H13N3OSF(000) = 640
Mr = 307.36Dx = 1.364 Mg m3
Monoclinic, P21/nMelting point = 446.2–446.7 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.0875 (1) ÅCell parameters from 3090 reflections
b = 16.1718 (4) Åθ = 2.2–22.4°
c = 18.2847 (4) ŵ = 0.22 mm1
β = 95.892 (2)°T = 296 K
V = 1496.41 (6) Å3Rod, yellow
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2184 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 27.4°, θmin = 1.7°
ω/2θ scansh = 66
Absorption correction: ψ scan
(North et al., 1968)
k = 2018
Tmin = 0.939, Tmax = 0.969l = 2323
13322 measured reflections3 standard reflections every 97 reflections
3411 independent reflections intensity decay: 2.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4696P]
where P = (Fo2 + 2Fc2)/3
3411 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.30 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C17H13N3OSV = 1496.41 (6) Å3
Mr = 307.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.0875 (1) ŵ = 0.22 mm1
b = 16.1718 (4) ÅT = 296 K
c = 18.2847 (4) Å0.40 × 0.30 × 0.20 mm
β = 95.892 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2184 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.939, Tmax = 0.9693 standard reflections every 97 reflections
13322 measured reflections intensity decay: 2.1%
3411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
3411 reflectionsΔρmin = 0.22 e Å3
207 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00333 (14)0.14855 (4)0.20925 (4)0.0704 (2)
O10.5088 (4)0.09876 (10)0.02568 (9)0.0724 (5)
N10.2883 (4)0.17950 (11)0.10117 (10)0.0503 (4)
N20.2175 (4)0.04129 (12)0.12428 (10)0.0602 (5)
C170.2711 (4)0.05169 (12)0.23117 (11)0.0442 (5)
C130.1919 (4)0.12237 (12)0.26802 (11)0.0482 (5)
C70.4431 (5)0.16753 (13)0.04478 (11)0.0524 (5)
N30.3173 (4)0.14846 (11)0.33306 (10)0.0579 (5)
C10.5204 (4)0.24240 (13)0.00465 (10)0.0470 (5)
C160.4940 (4)0.00801 (14)0.26304 (13)0.0558 (6)
H130.55380.03890.24040.067*
C80.1748 (4)0.11985 (13)0.14277 (11)0.0511 (5)
C120.0297 (5)0.16872 (13)0.23615 (14)0.0582 (6)
H100.08500.21560.25970.070*
C90.1265 (4)0.02866 (13)0.16352 (12)0.0520 (5)
C110.1587 (5)0.14385 (14)0.17142 (14)0.0607 (6)
H90.30230.17450.15080.073*
C20.7141 (5)0.23490 (16)0.04248 (13)0.0650 (6)
H10.80190.18480.04580.078*
C150.6203 (5)0.03616 (15)0.32799 (13)0.0621 (6)
H120.76860.00900.35020.075*
C140.5228 (5)0.10613 (16)0.36003 (13)0.0637 (6)
H110.61110.12420.40420.076*
C60.3941 (5)0.31702 (15)0.00781 (13)0.0658 (7)
H50.26100.32320.03860.079*
C50.4626 (6)0.38332 (17)0.03438 (14)0.0784 (8)
H40.37870.43400.03080.094*
C40.6519 (6)0.37434 (18)0.08094 (14)0.0747 (7)
H30.69470.41840.11020.090*
C100.0822 (5)0.07367 (14)0.13504 (13)0.0599 (6)
H80.17540.05780.09090.072*
C30.7785 (5)0.30086 (19)0.08470 (15)0.0764 (8)
H20.91000.29500.11610.092*
H60.268 (4)0.2277 (10)0.1143 (10)0.043 (6)*
H70.324 (5)0.0371 (19)0.0876 (14)0.115 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0932 (5)0.0458 (4)0.0790 (4)0.0004 (3)0.0421 (4)0.0001 (3)
O10.1085 (14)0.0473 (10)0.0671 (10)0.0049 (9)0.0359 (10)0.0030 (8)
N10.0701 (12)0.0363 (10)0.0461 (10)0.0012 (9)0.0131 (9)0.0013 (8)
N20.0852 (15)0.0426 (11)0.0558 (12)0.0015 (10)0.0220 (11)0.0056 (9)
C170.0501 (11)0.0343 (10)0.0503 (11)0.0001 (9)0.0159 (9)0.0048 (9)
C130.0589 (13)0.0362 (11)0.0522 (12)0.0016 (9)0.0189 (10)0.0032 (9)
C70.0653 (14)0.0480 (13)0.0443 (11)0.0010 (10)0.0080 (10)0.0033 (9)
N30.0709 (13)0.0490 (11)0.0550 (11)0.0006 (10)0.0123 (10)0.0033 (9)
C10.0554 (12)0.0489 (12)0.0368 (10)0.0039 (10)0.0048 (9)0.0001 (9)
C160.0594 (14)0.0449 (13)0.0664 (14)0.0077 (10)0.0227 (12)0.0067 (11)
C80.0664 (14)0.0387 (12)0.0493 (11)0.0025 (10)0.0108 (10)0.0039 (9)
C120.0687 (15)0.0393 (12)0.0692 (15)0.0076 (10)0.0199 (12)0.0077 (10)
C90.0642 (14)0.0401 (12)0.0536 (12)0.0027 (10)0.0154 (11)0.0035 (10)
C110.0597 (14)0.0515 (14)0.0711 (15)0.0089 (11)0.0068 (12)0.0150 (12)
C20.0682 (15)0.0633 (16)0.0668 (15)0.0042 (12)0.0220 (13)0.0018 (12)
C150.0542 (14)0.0669 (16)0.0655 (15)0.0073 (12)0.0077 (12)0.0149 (12)
C140.0670 (16)0.0664 (16)0.0581 (14)0.0028 (13)0.0084 (12)0.0030 (12)
C60.0821 (17)0.0613 (15)0.0584 (14)0.0085 (13)0.0276 (13)0.0110 (11)
C50.104 (2)0.0613 (16)0.0740 (16)0.0143 (15)0.0295 (16)0.0208 (13)
C40.0806 (18)0.0751 (19)0.0706 (16)0.0080 (15)0.0187 (14)0.0243 (14)
C100.0687 (15)0.0509 (14)0.0597 (14)0.0019 (12)0.0054 (12)0.0091 (11)
C30.0728 (17)0.086 (2)0.0761 (17)0.0040 (15)0.0362 (14)0.0121 (15)
Geometric parameters (Å, º) top
S1—C81.655 (2)C12—C111.354 (3)
O1—C71.223 (2)C12—H100.9300
N1—C71.374 (3)C9—C101.347 (3)
N1—C81.390 (3)C11—C101.391 (3)
N1—H60.826 (15)C11—H90.9300
N2—C81.338 (3)C2—C31.376 (3)
N2—C91.441 (3)C2—H10.9300
N2—H70.909 (17)C15—C141.389 (3)
C17—C131.407 (3)C15—H120.9300
C17—C161.410 (3)C14—H110.9300
C17—C91.422 (3)C6—C51.386 (3)
C13—N31.358 (3)C6—H50.9300
C13—C121.427 (3)C5—C41.357 (4)
C7—C11.490 (3)C5—H40.9300
N3—C141.304 (3)C4—C31.357 (4)
C1—C61.371 (3)C4—H30.9300
C1—C21.379 (3)C10—H80.9300
C16—C151.369 (3)C3—H20.9300
C16—H130.9300
C7—N1—C8127.96 (19)C10—C9—N2120.8 (2)
C7—N1—H6116.7 (14)C17—C9—N2118.35 (19)
C8—N1—H6115.2 (14)C12—C11—C10121.7 (2)
C8—N2—C9123.42 (19)C12—C11—H9119.1
C8—N2—H7112 (2)C10—C11—H9119.1
C9—N2—H7124 (2)C3—C2—C1120.6 (2)
C13—C17—C16117.8 (2)C3—C2—H1119.7
C13—C17—C9118.79 (19)C1—C2—H1119.7
C16—C17—C9123.39 (19)C16—C15—C14118.7 (2)
N3—C13—C17122.7 (2)C16—C15—H12120.6
N3—C13—C12118.3 (2)C14—C15—H12120.6
C17—C13—C12118.9 (2)N3—C14—C15125.1 (2)
O1—C7—N1122.5 (2)N3—C14—H11117.4
O1—C7—C1120.3 (2)C15—C14—H11117.4
N1—C7—C1117.14 (19)C1—C6—C5120.8 (2)
C14—N3—C13117.0 (2)C1—C6—H5119.6
C6—C1—C2118.1 (2)C5—C6—H5119.6
C6—C1—C7123.1 (2)C4—C5—C6120.1 (3)
C2—C1—C7118.6 (2)C4—C5—H4119.9
C15—C16—C17118.6 (2)C6—C5—H4119.9
C15—C16—H13120.7C3—C4—C5119.8 (2)
C17—C16—H13120.7C3—C4—H3120.1
N2—C8—N1115.68 (19)C5—C4—H3120.1
N2—C8—S1124.54 (17)C9—C10—C11120.3 (2)
N1—C8—S1119.78 (16)C9—C10—H8119.9
C11—C12—C13119.5 (2)C11—C10—H8119.9
C11—C12—H10120.2C4—C3—C2120.6 (2)
C13—C12—H10120.2C4—C3—H2119.7
C10—C9—C17120.8 (2)C2—C3—H2119.7
C16—C17—C13—N31.5 (3)C16—C17—C9—C10178.8 (2)
C9—C17—C13—N3179.51 (18)C13—C17—C9—N2176.79 (18)
C16—C17—C13—C12178.68 (18)C16—C17—C9—N22.1 (3)
C9—C17—C13—C120.3 (3)C8—N2—C9—C10105.1 (3)
C8—N1—C7—O12.7 (4)C8—N2—C9—C1778.2 (3)
C8—N1—C7—C1174.7 (2)C13—C12—C11—C100.4 (3)
C17—C13—N3—C141.8 (3)C6—C1—C2—C30.3 (3)
C12—C13—N3—C14178.4 (2)C7—C1—C2—C3175.3 (2)
O1—C7—C1—C6160.1 (2)C17—C16—C15—C140.4 (3)
N1—C7—C1—C617.3 (3)C13—N3—C14—C151.0 (4)
O1—C7—C1—C214.6 (3)C16—C15—C14—N30.1 (4)
N1—C7—C1—C2168.0 (2)C2—C1—C6—C51.0 (4)
C13—C17—C16—C150.4 (3)C7—C1—C6—C5175.7 (2)
C9—C17—C16—C15179.3 (2)C1—C6—C5—C41.7 (4)
C9—N2—C8—N1176.8 (2)C6—C5—C4—C31.6 (4)
C9—N2—C8—S14.2 (3)C17—C9—C10—C110.3 (3)
C7—N1—C8—N21.6 (3)N2—C9—C10—C11176.3 (2)
C7—N1—C8—S1179.31 (18)C12—C11—C10—C90.6 (4)
N3—C13—C12—C11179.8 (2)C5—C4—C3—C20.9 (4)
C17—C13—C12—C110.0 (3)C1—C2—C3—C40.3 (4)
C13—C17—C9—C100.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···N3i0.83 (2)2.28 (2)3.100 (3)171 (2)
N2—H7···O10.91 (3)1.84 (3)2.619 (3)143 (3)
C6—H5···N3i0.932.463.252 (3)143
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H13N3OS
Mr307.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)5.0875 (1), 16.1718 (4), 18.2847 (4)
β (°) 95.892 (2)
V3)1496.41 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.939, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
13322, 3411, 2184
Rint0.032
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.04
No. of reflections3411
No. of parameters207
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H6···N3i0.825 (17)2.283 (17)3.100 (3)170.5 (18)
N2—H7···O10.91 (3)1.84 (3)2.619 (3)143 (3)
C6—H5···N3i0.93002.46003.252 (3)143.00
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Science Foundation of Jiangsu Education Bureau (05KJD 150039), the Professor Foundation of Huaiyin Teachers College (05 HSJS018) and the Science Foundation of Jangsu Key Laboratory for the Chemistry of Low-Dimensional Materials (JSKC 06028) for financial support.

References

First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHackmann, J. T. (1960). US Patent No. 2 923 656.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKaminsky, W., Goldberg, K. I. & West, D. X. (2002). J. Mol. Struct. 605, 9–15.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPluta, T. & Sadlej, A. J. (2001). J. Chem. Phys. 114, 136–146.  Web of Science CrossRef CAS Google Scholar
First citationSarkis, G. Y. & Faisal, E. D. (1985). J. Heterocycl. Chem. 22, 137–140.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, S. J., Duan, L. P., Ke, S. Y. & Zhu, J. M. (2004). Chin. J. Struct. Chem. 23, 441–444.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds