organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Butyl 2-(5-iodo-3-methyl­sulfinyl-1-benzo­furan-2-yl)acetate

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 11 December 2008; accepted 5 January 2009; online 8 January 2009)

In the title compound, C15H17IO4S, the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran fragment. The crystal structure is stabilized by weak inter­molecular C—H⋯π inter­actions between a methyl H atom of the methyl­sulfinyl group and the benzene ring of the benzofuran system, and by an I⋯O halogen bond of 3.173 (3) Å and a nearly linear C—I⋯O angle of 171.7 (1)°. In addition, the crystal structure exhibits weak inter­molecular C—H⋯O hydrogen bonds. The O atom of the carbonyl group and the butyl chain are both disordered over two positions with site-occupancy factors from refinement of 0.55 (4) and 0.45 (4) (for the O atom), and 0.76 (2) and 0.24 (2) (for the butyl group).

Related literature

For the crystal structures of similar alkyl 2-(5-iodo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2007[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4081.], 2008[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2384.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17IO4S

  • Mr = 420.25

  • Monoclinic, P 21 /n

  • a = 10.298 (1) Å

  • b = 15.208 (1) Å

  • c = 11.109 (1) Å

  • β = 100.669 (1)°

  • V = 1709.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.01 mm−1

  • T = 100 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.673, Tmax = 0.822

  • 8829 measured reflections

  • 3009 independent reflections

  • 2581 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.07

  • 3009 reflections

  • 222 parameters

  • 43 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15BCgi 0.98 2.97 3.722 (4) 134
C5—H5⋯O4ii 0.95 2.46 3.370 (4) 160
C9—H9B⋯O4iii 0.99 2.50 3.376 (4) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of the C2–C7 benzene ring.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, viz. ethyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2007) and isopropyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008). Here we report the crystal structure of the title compound, butyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.004 (3) Å from the least-squares plane defined by the nine constituent atoms. The oxygen atom of carbonyl group is disordered over two positions with site–occupancy factors of 0.55 (4) (for atom labelled A) and 0.45 (4) (for atom labelled B), and the butyl group over two positions with site–occupancy factors of 0.76 (2) (for atom labelled A) and 0.24 (2) (for atom labelled B), respectively, in Fig. 1. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···π interactions between a methyl H atom of the methylsulfinyl group and the benzene ring of the benzofuran unit, with a C15—H15B···Cgi separation of 2.97 Å (Table 1 and Fig. 2; Cg is the centroid of the C2–C7 benzene ring, symmetry code as in Fig. 2). The molecular packing is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring SO unit, with an I···O4iv distance of 3.173 (3) Å (symmetry code as in Fig. 2). In addition, weak intermolecular C—H···O hydrogen bonds in the structure are observed (Table 1 & Fig. 2).

Related literature top

For the crystal structures of similar alkyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate derivatives. see: Choi et al. (2007, 2008). For a review of halogen bonding, see: Politzer et al. (2007).Cg is the centroid of the C2–C7 benzene ring.

Experimental top

77% 3-chloroperoxybenzoic acid (123 mg, 0.55 mmol) was added in small portions to a stirred solution of butyl 2-(5-iodo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (202 mg, 0.5 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 3 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:2 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 407-408 K; Rf = 0.54 (hexane-ethyl acetate, 1;2 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in acetone at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 0.92 (t, J = 7.68 Hz, 3H), 1.31-1.42 (m, 2H),1.59-1.67 (m, 2H), 3.07 (s, 3H), 4.03 (s, 2H), 4.15 (t, J = 6.6 Hz, 2H), 7.29 (d, J = 8.8 Hz, 1H), 7.66 (dd, J = 8.8 Hz and J = 1.84 Hz, 1H), 8.29 (d, J = 1.84 Hz, 1H); EI-MS 420 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for the aryl, 0.99 Å for the methylene, and 0.98 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms. The oxygen atom of carbonyl group and butyl group were found to be disordered over two positions and modelled with site-occupancy factors, from refinement of 0.55 (4) (O3A) and 0.45 (4) (O3B), and 0.76 (2) (C11A–C14A)) and 0.24 (2) (C11B–C14B), respectively. The displacement ellipsoids of part B were restrained using command ISOR (0.01), both sets of O and C atoms were restrained using the command DELU and the distances of C—C were restrained to 1.480 (2) Å using command DFIX. The distances of CO were restrained to 0.001 Å using command SADI.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. The oxygen atom of carbonyl group and butyl group are disordered over two positions with site–occupancy factors, from refinement of 0.55 (4) and 0.45 (4) (for the O atom), 0.76 (2) and 0.24 (2) (for the butyl group), respectively.
[Figure 2] Fig. 2. C—H···π, I···O halogen bond and C—H···O interactions (dotted lines) in the title compound. Cg denotes ring centroid. The disordered component of the oxygen atom of carbonyl group and butyl group, part B, have been omitted for clairty as have H atoms not involved in intermolecular contacts. [Symmetry code: (i) -x+1, -y+1, -z+1 ; (ii) x-1/2, -y+1/2, z-1/2; (iii) x-1/2, -y+1/2, z-1/2; (iv) -x+2, -y+1, -z+1.]
Butyl 2-(5-iodo-3-methylsulfinyl-1-benzofuran-2-yl)acetate top
Crystal data top
C15H17IO4SF(000) = 832
Mr = 420.25Dx = 1.633 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P_2ynCell parameters from 5617 reflections
a = 10.298 (1) Åθ = 2.3–28.1°
b = 15.208 (1) ŵ = 2.01 mm1
c = 11.109 (1) ÅT = 100 K
β = 100.669 (1)°Block, colorless
V = 1709.7 (3) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3009 independent reflections
Radiation source: fine-focus sealed tube2581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.3°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
k = 1118
Tmin = 0.673, Tmax = 0.822l = 1313
8829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.085H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0408P)2 + 1.6213P]
where P = (Fo2 + 2Fc2)/3
3009 reflections(Δ/σ)max < 0.001
222 parametersΔρmax = 0.71 e Å3
43 restraintsΔρmin = 0.61 e Å3
Crystal data top
C15H17IO4SV = 1709.7 (3) Å3
Mr = 420.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.298 (1) ŵ = 2.01 mm1
b = 15.208 (1) ÅT = 100 K
c = 11.109 (1) Å0.20 × 0.20 × 0.10 mm
β = 100.669 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2581 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.822Rint = 0.017
8829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03243 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
3009 reflectionsΔρmin = 0.61 e Å3
222 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I0.98000 (3)0.639217 (19)0.38449 (3)0.07282 (14)
S0.60101 (8)0.31517 (5)0.45617 (8)0.0460 (2)
O10.4557 (2)0.45536 (17)0.1655 (2)0.0562 (6)
O20.1138 (3)0.3286 (2)0.2161 (3)0.0849 (10)
O3A0.2384 (15)0.4110 (13)0.3619 (13)0.074 (3)0.55 (4)
O3B0.2198 (16)0.4365 (10)0.323 (2)0.075 (4)0.45 (4)
O40.7434 (2)0.29309 (16)0.4707 (2)0.0588 (6)
C10.5648 (3)0.3928 (2)0.3367 (3)0.0411 (7)
C20.6417 (3)0.4674 (2)0.3106 (3)0.0404 (7)
C30.7603 (3)0.5070 (2)0.3653 (3)0.0438 (7)
H30.81190.48430.43840.053*
C40.7992 (3)0.5803 (2)0.3085 (3)0.0520 (8)
C50.7244 (4)0.6150 (3)0.2018 (4)0.0651 (10)
H50.75510.66570.16580.078*
C60.6077 (4)0.5773 (3)0.1483 (3)0.0628 (10)
H60.55550.60090.07600.075*
C70.5693 (3)0.5030 (2)0.2046 (3)0.0492 (8)
C80.4576 (3)0.3885 (2)0.2479 (3)0.0474 (8)
C90.3408 (3)0.3292 (3)0.2250 (4)0.0581 (9)
H9A0.36450.27240.26680.070*
H9B0.31650.31760.13600.070*
C100.2236 (4)0.3677 (3)0.2695 (4)0.0609 (10)
C120.1176 (4)0.3369 (5)0.1516 (6)0.121 (2)
H12A0.11860.27440.12660.145*0.759 (19)
H12B0.20180.34840.17960.145*0.759 (19)
H12C0.09300.27480.14150.145*0.241 (19)
H12D0.20160.34070.18250.145*0.241 (19)
C130.1166 (8)0.3909 (7)0.0415 (9)0.180 (4)
H13A0.03640.37890.00690.216*0.759 (19)
H13B0.11860.45430.06140.216*0.759 (19)
H13C0.03450.36870.01780.216*0.241 (19)
H13D0.09050.44830.08080.216*0.241 (19)
C11A0.0090 (6)0.3482 (8)0.2583 (7)0.077 (2)0.759 (19)
H11A0.00770.40930.28940.092*0.759 (19)
H11B0.02080.30770.32510.092*0.759 (19)
C14A0.2370 (12)0.3655 (11)0.0466 (14)0.175 (6)0.759 (19)
H14A0.30890.40620.03920.263*0.759 (19)
H14B0.26270.30560.02860.263*0.759 (19)
H14C0.21910.36790.13010.263*0.759 (19)
C11B0.0098 (17)0.3900 (18)0.223 (3)0.077 (7)0.241 (19)
H11C0.02220.39830.30890.093*0.241 (19)
H11D0.00170.44800.18510.093*0.241 (19)
C14B0.185 (4)0.424 (3)0.0790 (17)0.141 (14)0.241 (19)
H14D0.26810.39200.10410.211*0.241 (19)
H14E0.12840.41490.13990.211*0.241 (19)
H14F0.20340.48690.07280.211*0.241 (19)
C150.5826 (5)0.3860 (3)0.5804 (3)0.0654 (10)
H15A0.60710.35410.65790.098*
H15B0.49040.40530.57050.098*
H15C0.64000.43740.58070.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.06107 (19)0.0672 (2)0.0881 (2)0.02167 (12)0.00823 (14)0.01316 (14)
S0.0464 (4)0.0356 (4)0.0542 (5)0.0007 (3)0.0051 (4)0.0015 (3)
O10.0494 (13)0.0693 (16)0.0437 (13)0.0025 (12)0.0075 (10)0.0056 (12)
O20.0446 (14)0.110 (2)0.097 (2)0.0015 (15)0.0058 (14)0.053 (2)
O3A0.072 (5)0.087 (6)0.064 (5)0.013 (5)0.016 (4)0.030 (4)
O3B0.069 (5)0.068 (5)0.088 (7)0.000 (4)0.014 (5)0.030 (5)
O40.0513 (14)0.0568 (15)0.0648 (15)0.0124 (11)0.0019 (11)0.0010 (12)
C10.0395 (16)0.0378 (15)0.0440 (17)0.0028 (13)0.0030 (13)0.0046 (13)
C20.0405 (16)0.0447 (17)0.0350 (15)0.0049 (13)0.0045 (12)0.0031 (13)
C30.0431 (17)0.0464 (18)0.0406 (16)0.0009 (14)0.0044 (13)0.0022 (14)
C40.0506 (19)0.052 (2)0.053 (2)0.0045 (16)0.0100 (15)0.0052 (16)
C50.075 (3)0.062 (2)0.060 (2)0.003 (2)0.015 (2)0.0218 (19)
C60.069 (2)0.075 (3)0.0423 (19)0.006 (2)0.0048 (17)0.0150 (18)
C70.0499 (19)0.057 (2)0.0394 (17)0.0066 (16)0.0057 (14)0.0018 (15)
C80.0426 (17)0.0495 (18)0.0475 (18)0.0035 (14)0.0013 (14)0.0100 (15)
C90.0427 (18)0.057 (2)0.069 (2)0.0006 (16)0.0049 (16)0.0229 (18)
C100.051 (2)0.065 (2)0.066 (2)0.0061 (17)0.0064 (18)0.0211 (19)
C120.053 (3)0.160 (6)0.149 (6)0.002 (3)0.021 (3)0.065 (5)
C130.152 (8)0.215 (10)0.166 (9)0.103 (8)0.010 (7)0.029 (8)
C11A0.049 (3)0.095 (6)0.087 (4)0.004 (3)0.016 (3)0.018 (4)
C14A0.148 (8)0.195 (10)0.167 (9)0.043 (7)0.010 (7)0.002 (7)
C11B0.064 (9)0.088 (11)0.084 (11)0.011 (8)0.023 (8)0.007 (8)
C14B0.142 (16)0.142 (16)0.139 (16)0.015 (10)0.027 (10)0.012 (9)
C150.090 (3)0.058 (2)0.051 (2)0.010 (2)0.022 (2)0.0034 (18)
Geometric parameters (Å, º) top
I—C42.098 (4)C9—H9B0.9900
I—O4i13.531 (3)C12—C131.476 (11)
S—O41.484 (2)C12—C11B1.480 (2)
S—C11.764 (3)C12—C11A1.481 (2)
S—C151.788 (4)C12—H12A0.9900
O1—C81.366 (4)C12—H12B0.9900
O1—C71.376 (4)C12—H12C0.9900
O2—C101.317 (5)C12—H12D0.9900
O2—C11A1.459 (7)C13—C14B1.4797 (15)
O2—C11B1.59 (3)C13—C14A1.481 (2)
O3A—O3B0.590 (16)C13—H13A0.9900
O3A—C101.205 (5)C13—H13B0.9900
O3B—C101.205 (5)C13—H13C0.9900
C1—C81.339 (4)C13—H13D0.9900
C1—C21.444 (4)C11A—H11A0.9900
C2—C71.383 (4)C11A—H11B0.9900
C2—C31.395 (4)C14A—H14A0.9800
C3—C41.377 (5)C14A—H14B0.9800
C3—H30.9500C14A—H14C0.9800
C4—C51.392 (5)C11B—H11C0.9900
C5—C61.364 (6)C11B—H11D0.9900
C5—H50.9500C14B—H14D0.9800
C6—C71.384 (5)C14B—H14E0.9800
C6—H60.9500C14B—H14F0.9800
C8—C91.486 (5)C15—H15A0.9800
C9—C101.505 (5)C15—H15B0.9800
C9—H9A0.9900C15—H15C0.9800
C4—I—O4i52.14 (10)C11B—C12—H12C113.6
O4—S—C1107.46 (15)C11A—C12—H12C91.8
O4—S—C15107.26 (19)H12B—C12—H12C117.5
C1—S—C1598.03 (17)C13—C12—H12D113.3
C8—O1—C7106.0 (2)C11B—C12—H12D113.4
C10—O2—C11A119.1 (4)C11A—C12—H12D107.1
C10—O2—C11B109.9 (4)H12A—C12—H12D100.9
O3B—O3A—C1075.8 (4)H12C—C12—H12D110.7
O3A—O3B—C1075.8 (4)C12—C13—C14B149.8 (19)
C8—C1—C2107.4 (3)C12—C13—C14A105.6 (10)
C8—C1—S123.5 (3)C12—C13—H13A110.6
C2—C1—S129.1 (2)C14B—C13—H13A90.2
C7—C2—C3119.5 (3)C14A—C13—H13A110.6
C7—C2—C1104.4 (3)C12—C13—H13B110.6
C3—C2—C1136.0 (3)C14B—C13—H13B81.2
C4—C3—C2117.1 (3)C14A—C13—H13B110.6
C4—C3—H3121.5H13A—C13—H13B108.8
C2—C3—H3121.5C12—C13—H13C99.6
C3—C4—C5122.3 (3)C14B—C13—H13C99.4
C3—C4—I118.3 (2)C14A—C13—H13C112.8
C5—C4—I119.4 (3)H13B—C13—H13C116.6
C6—C5—C4121.1 (4)C12—C13—H13D99.6
C6—C5—H5119.4C14B—C13—H13D98.4
C4—C5—H5119.4C14A—C13—H13D130.3
C5—C6—C7116.6 (3)H13A—C13—H13D99.0
C5—C6—H6121.7H13C—C13—H13D104.1
C7—C6—H6121.7O2—C11A—C12106.9 (5)
O1—C7—C2110.8 (3)O2—C11A—H11A110.3
O1—C7—C6125.8 (3)C12—C11A—H11A110.3
C2—C7—C6123.4 (3)O2—C11A—H11B110.3
C1—C8—O1111.4 (3)C12—C11A—H11B110.3
C1—C8—C9133.4 (3)H11A—C11A—H11B108.6
O1—C8—C9115.2 (3)C13—C14A—H14A109.5
C8—C9—C10112.4 (3)C13—C14A—H14B109.5
C8—C9—H9A109.1C13—C14A—H14C109.5
C10—C9—H9A109.1C12—C11B—O2100.4 (12)
C8—C9—H9B109.1C12—C11B—H11C111.7
C10—C9—H9B109.1O2—C11B—H11C111.7
H9A—C9—H9B107.9C12—C11B—H11D111.7
O3A—C10—O2126.3 (7)O2—C11B—H11D111.7
O3B—C10—O2120.6 (9)H11C—C11B—H11D109.5
O3A—C10—C9120.6 (8)C13—C14B—H14D109.5
O3B—C10—C9126.7 (9)C13—C14B—H14E109.5
O2—C10—C9110.5 (3)H14D—C14B—H14E109.5
C13—C12—C11B91.3 (16)C13—C14B—H14F109.5
C13—C12—C11A118.6 (8)H14D—C14B—H14F109.5
C13—C12—H12A107.7H14E—C14B—H14F109.5
C11B—C12—H12A130.0S—C15—H15A109.5
C11A—C12—H12A107.7S—C15—H15B109.5
C13—C12—H12B107.7H15A—C15—H15B109.5
C11B—C12—H12B110.4S—C15—H15C109.5
C11A—C12—H12B107.7H15A—C15—H15C109.5
H12A—C12—H12B107.1H15B—C15—H15C109.5
C13—C12—H12C113.4
O4—S—C1—C8135.5 (3)C7—O1—C8—C10.9 (4)
C15—S—C1—C8113.5 (3)C7—O1—C8—C9178.5 (3)
O4—S—C1—C241.2 (3)C1—C8—C9—C1096.8 (5)
C15—S—C1—C269.8 (3)O1—C8—C9—C1080.1 (4)
C8—C1—C2—C70.7 (3)O3B—O3A—C10—O288 (3)
S—C1—C2—C7177.8 (3)O3B—O3A—C10—C9112 (3)
C8—C1—C2—C3179.9 (4)O3A—O3B—C10—O2111 (3)
S—C1—C2—C33.0 (5)O3A—O3B—C10—C987 (3)
C7—C2—C3—C40.5 (4)C11A—O2—C10—O3A10.1 (16)
C1—C2—C3—C4179.6 (3)C11B—O2—C10—O3A39 (2)
C2—C3—C4—C50.5 (5)C11A—O2—C10—O3B23.3 (17)
C2—C3—C4—I178.0 (2)C11B—O2—C10—O3B6 (2)
O4i—I—C4—C355.4 (2)C11A—O2—C10—C9172.1 (6)
O4i—I—C4—C5123.1 (4)C11B—O2—C10—C9159.0 (14)
C3—C4—C5—C60.1 (6)C8—C9—C10—O3A36.2 (13)
I—C4—C5—C6178.6 (3)C8—C9—C10—O3B2.8 (18)
C4—C5—C6—C70.7 (6)C8—C9—C10—O2160.6 (4)
C8—O1—C7—C20.4 (4)C11B—C12—C13—C14B158 (4)
C8—O1—C7—C6179.7 (3)C11A—C12—C13—C14B168 (3)
C3—C2—C7—O1179.6 (3)C11B—C12—C13—C14A168.6 (12)
C1—C2—C7—O10.2 (3)C11A—C12—C13—C14A179.2 (8)
C3—C2—C7—C60.2 (5)C10—O2—C11A—C12150.7 (6)
C1—C2—C7—C6179.1 (3)C11B—O2—C11A—C1273.5 (9)
C5—C6—C7—O1180.0 (3)C13—C12—C11A—O259.2 (10)
C5—C6—C7—C20.8 (6)C11B—C12—C11A—O281 (2)
C2—C1—C8—O11.0 (4)C13—C12—C11B—O298.9 (16)
S—C1—C8—O1178.3 (2)C11A—C12—C11B—O262 (2)
C2—C1—C8—C9178.0 (3)C10—O2—C11B—C12176.1 (12)
S—C1—C8—C94.6 (5)C11A—O2—C11B—C1269.0 (8)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cgii0.982.973.722 (4)134
C5—H5···O4iii0.952.463.370 (4)160
C9—H9B···O4iv0.992.503.376 (4)147
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H17IO4S
Mr420.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.298 (1), 15.208 (1), 11.109 (1)
β (°) 100.669 (1)
V3)1709.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.01
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.673, 0.822
No. of measured, independent and
observed [I > 2σ(I)] reflections
8829, 3009, 2581
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.07
No. of reflections3009
No. of parameters222
No. of restraints43
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.61

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···Cgi0.982.973.722 (4)134.0
C5—H5···O4ii0.952.463.370 (4)159.9
C9—H9B···O4iii0.992.503.376 (4)147.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o4081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o2384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds