organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o310-o311

1,3-Bis(4-tert-butyl­benz­yl)-4,5-di­hydro­imidazolium chloride monohydrate

aDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, b Department of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey, cDepartment of Chemistry, Clemson University, Clemson, SC 29634, USA, dDepartment of Chemistry, Faculty of Science and Arts, nönü University, Malatya, TR 44280, Turkey, and eDepartment of Chemistry, Faculty of Science, Ege University, Bornova-zmir, TR 35100, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 11 December 2008; accepted 6 January 2009; online 14 January 2009)

In the title compound, C25H35N2+·Cl·H2O, the imidazolidine ring adopts a twisted conformation, with a pseudo-twofold axis passing through the N—C—N carbon and the opposite C—C bond. The N—C—N fragment of the imidazolidine ring shows some degree of both double- and single-bond character due to partial electron delocalization. One of the tert-butyl groups is disordered over two conformations with occupancies of 0.714 (8) and 0.286 (8). In the crystal, O—H⋯Cl and C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For synthesis, see: Yaşar et al. (2008[Yaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142-2149.]); Özdemir et al. (2004a[Özdemir, I., Gök, Y., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004a). Heteroat. Chem. 15, 419-423.], 2004b[Özdemir, I., Alıcı, B., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004b). J. Mol. Catal. A Chem. 217, 37-40.]). For general background, see: Herrmann et al. (1998[Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.]); Glorius (2007[Glorius, F. (2007). Topics in Organometallic Chemistry Vol. 21, N-Heterocyclic Carbenes in Transition Metal Catalysis. Heidelberg: Springer.]); Nolan (2006[Nolan, S. P. (2006). N-Heterocyclic Carbenes in Synthesis. Weinheim: Wiley.]). For related compounds, see: Arslan et al. (2009a[Arslan, H., VanDerveer, D., Gök, Y., Özdemir, I. & Çetinkaya, B. (2009a). Acta Cryst. E65, o109-o110.],b[Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009b). Acta Cryst. E65, o121-o122.]) and references therein. For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering and asymmetry parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C25H35N2+·Cl·H2O

  • Mr = 417.02

  • Monoclinic, P 21 /c

  • a = 18.205 (4) Å

  • b = 10.148 (2) Å

  • c = 13.452 (3) Å

  • β = 100.01 (3)°

  • V = 2447.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 153 (2) K

  • 0.43 × 0.17 × 0.05 mm

Data collection
  • Rigaku AFC 8S Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.]) Tmin = 0.929, Tmax = 0.991

  • 17800 measured reflections

  • 4297 independent reflections

  • 2886 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.207

  • S = 1.03

  • 4297 reflections

  • 299 parameters

  • 50 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1i 0.86 (4) 2.36 (4) 3.206 (3) 174 (4)
C3—H3B⋯O1ii 0.96 2.53 3.304 (4) 138
C17—H17⋯O1i 0.96 2.47 3.423 (5) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The first report of the application of N-heterocyclic carbenes compounds to various reactions was in 1998 (Herrmann et al., 1998). The metal complexes of N-heterocyclic carbene ligands have revealed excellent catalytic properties in a wide range of metal-catalyzed transformations such as Heck, Suzuki and Sonogashira couplings, Buchwald Hartwig amination, and olefin metathesis (Glorius, 2007; Nolan, 2006).

The use and characterization of an in situ formed imidazolidin-2-ylidene, tetrahydropyrimidin-2-ylidene, and the tetrahydrodiazepin-2-ylidene/palladium(II) system, which exhibits high activity in various coupling reactions of aryl bromides and aryl chlorides has been previously reported by our team (Yaşar et al., 2008; Arslan et al., 2009a, 2009b, and references therein). In order to obtain a more stable, efficient and active system, we have also investigated benzo-annelated derivatives (Özdemir et al., 2004a, 2004b; Yaşar et al., 2008). In the present work, we report the preparation and characterization of one of them, 1,3-bis(4-tert-butylbenzyl)-4,5-dihydroimidazolium chloride monohydrate, (I). The title compound was purified by re-crystallization from an ethanol:dichloromethane mixture (1:1) and characterized by elemental analysis, 1H and 13C-NMR and IR spectroscopy. The analytical and spectroscopic data are consistent with the proposed structure given in Scheme 1.

The molecular structure of the title compound is depicted in Fig. 1. The crystal structure is composed of a 1,3-bis(4-tert-butylbenzyl)-4,5-dihydroimidazolium cation, a Cl- anion and a water molecule. The imidazolidine ring adopts a twisted conformation with a pseudo-twofold axis passing through C1 and the C2—C3 bond. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameter (Nardelli, 1983) for the imidazolidine ring are q2 = 0.073 (3) Å, ϕ2 = 306 (3)o and ΔC2(C1) = 0.1 (3), ΔCs(C1) = 9.6 (3). The largest deviations from the mean plane of C1—N1—C3—C2—N2 ring are 0.044 (4) Å and 0.044 (3) Å for atom C2 and C3 atoms, respectively. One of the t-butyl groups is disordered over two conformations, with occupancies of 0.714 (8) and 0.286 (8).

The C—N bond lengths of N1—C1 and N2—C1 are shorter than the average single C—N bond length of 1.48 Å, being N1—C1 =1.319 (4) Å, N2—C1 = 1.312 (4) Å. The other C—N bond lengths (N1—C3 = 1.463 (4) Å, N2—C2 = 1.475 (4), N1—C4 = 1.458 (4) Å and N2—C15 = 1.449 (4) Å) are very close the average single C—N bond lengths. Therefore, we can easily say that the bonds in the N1—C1—N2 fragment of the imidazolidine ring are between double and single bond in character with partial electron delocalization. In addition, the sum of the bond angles around N1 (358.7°) and N2 (359.6°) indicate sp2 hybridization. The other bond lengths in (I) are in the normal ranges (Allen et al., 1987).

The crystal packing is shown in Fig. 2. Although there are no intramolecular D—H···A contacts, intermolecular C—H···O and O—H···Cl hydrogen bonds link the molecules of (I) into one-dimensional chains extending along the [010] direction (Table 1).

Related literature top

For synthesis, see: Yaşar et al. (2008); Özdemir et al. (2004a, 2004b). For general background, see: Herrmann et al. (1998); Glorius (2007); Nolan (2006). For related compounds, see: Arslan et al. (2009a,b) and references therein. For bond-length data, see: Allen et al. (1987). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The 4-tert-buthylbenzaldehyde (20 mmol) and the ethylenediamine (10 mmol) were stirred overnight in methanol. The diimine was collected as a white solid, filtrated and recrystallized in an alcohol/ether mixture. The diimine (10 mmol) was subsequently reduced by NaBH4 (30 mmol) in CH3OH (30 ml). The solution was then treated with 1 N HCl, and the organic phase was extracted with CH2Cl2 (3x30mL). After drying over MgSO4 and evaporation, the diamine was isolated as a solid. The diamine was then treated in a large excess of triethylorthoformate (50 ml) in the presence of 10 mmol of NH4Cl at 110 °C in a distillation apparatus until all of the ethanol was removed. Upon cooling to room temperature a colourless solid precipitated, which was collected by filtration and dried under vacuum. The crude product was recrystallized from absolute ethanol to give colourless needles and the solid was washed with diethyl ether (2x10 ml) and dried under vacuum. Yield: 3.53 g; 94%. M.p.: 294–295 °C; ν(CN) : 1669 cm-1. 1H NMR (δ, CDCl3): 1.24 (s, 18H, CH2C6H4(CCH3)3-4), 3.73 (s, 4H, NCH2CH2N), 4.80 (s, 4H, CH2C6H4(CCH3)3-4), 7.19–7.32 (m, 8H, CH2C6H4(CCH3)3-4), 10.20 (s, 1H, NCHN). 13C NMR (δ, CDCl3): 31.4 (CH2C6H4(CCH3)3-4), 34.9 (CH2C6H4(CCH3)3-4), 52.2 (CH2C6H4(CCH3)3-4), 126.3, 128.9, 129.8 and 152.3 (CH2C6H4(CCH3)3-4), 158.9 (NCHN). Anal. Calcd. for C25H35N2Cl: C,75.25; H, 8.84; N, 7.02%. Found: C, 75.20; H, 8.83; N, 7.0%.

Refinement top

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms. The water H atoms were located from a Fourier map and their distances were constrained to 0.83 Å and the Uiso(H) = 1.5Ueq(O). One of the t-butyl groups was disordered. Two components were refined with the major component having an occupancy of 0.714. Each component had constraints on the C11 - methyl distances (1.535 (50) Å) and the methyl-methyl distances (2.495 (50) Å). These values were obtained from the other t-butyl group in the structure.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
[Figure 3] Fig. 3. The formation of the title compound.
1,3-Bis(4-tert-butylbenzyl)-4,5-dihydroimidazolium chloride monohydrate top
Crystal data top
C25H35N2+·Cl·H2OF(000) = 904
Mr = 417.02Dx = 1.132 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5990 reflections
a = 18.205 (4) Åθ = 2.3–26.7°
b = 10.148 (2) ŵ = 0.17 mm1
c = 13.452 (3) ÅT = 153 K
β = 100.01 (3)°Plate, colorless
V = 2447.3 (9) Å30.43 × 0.17 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC 8S Mercury CCD
diffractometer
4297 independent reflections
Radiation source: Sealed Tube2886 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.072
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω scansh = 1521
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1212
Tmin = 0.929, Tmax = 0.991l = 1616
17800 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0868P)2 + 3.6749P]
where P = (Fo2 + 2Fc2)/3
4297 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.28 e Å3
50 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H35N2+·Cl·H2OV = 2447.3 (9) Å3
Mr = 417.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.205 (4) ŵ = 0.17 mm1
b = 10.148 (2) ÅT = 153 K
c = 13.452 (3) Å0.43 × 0.17 × 0.05 mm
β = 100.01 (3)°
Data collection top
Rigaku AFC 8S Mercury CCD
diffractometer
4297 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
2886 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.991Rint = 0.072
17800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06950 restraints
wR(F2) = 0.207H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
4297 reflectionsΔρmin = 0.26 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.55770 (5)0.59372 (8)0.69855 (6)0.0407 (2)
C10.44642 (19)0.3585 (3)0.5584 (2)0.0329 (7)
H10.46730.44240.58100.040*
C20.3626 (2)0.2034 (3)0.4864 (3)0.0408 (8)
H2A0.35130.19500.41430.049*
H2B0.32250.16670.51520.049*
C30.43716 (19)0.1369 (3)0.5294 (2)0.0348 (7)
H3A0.43190.07790.58350.042*
H3B0.45640.08900.47810.042*
C40.56104 (19)0.2349 (3)0.6223 (2)0.0358 (8)
H4A0.56070.17210.67560.043*
H4B0.57650.31810.65300.043*
C50.61762 (19)0.1916 (3)0.5590 (2)0.0328 (7)
C60.61032 (19)0.2201 (3)0.4561 (2)0.0362 (8)
H60.56600.26270.42180.043*
C70.6664 (2)0.1874 (4)0.4035 (3)0.0402 (8)
H70.65970.20710.33270.048*
C80.73238 (19)0.1271 (3)0.4493 (3)0.0360 (8)
C90.7385 (2)0.0989 (4)0.5517 (3)0.0422 (8)
H90.78310.05760.58630.051*
C100.6820 (2)0.1288 (4)0.6052 (3)0.0433 (9)
H100.68770.10550.67530.052*
C110.7948 (2)0.0960 (4)0.3890 (3)0.0421 (8)
C120.7640 (4)0.0329 (9)0.2899 (5)0.073 (2)0.714 (8)
H12A0.73930.04780.30160.109*0.714 (8)
H12B0.80390.01460.25380.109*0.714 (8)
H12C0.72890.09160.25080.109*0.714 (8)
C12'0.7917 (13)0.0488 (16)0.367 (2)0.109 (9)0.286 (8)
H12D0.74490.06990.32510.164*0.286 (8)
H12E0.79630.09690.42930.164*0.286 (8)
H12F0.83190.07240.33280.164*0.286 (8)
C130.8549 (4)0.0036 (8)0.4466 (5)0.072 (2)0.714 (8)
H13A0.87460.04110.51120.108*0.714 (8)
H13B0.89440.00730.40840.108*0.714 (8)
H13C0.83310.08070.45590.108*0.714 (8)
C13'0.8687 (10)0.148 (3)0.4447 (14)0.109 (10)0.286 (8)
H13D0.86050.19680.50310.164*0.286 (8)
H13E0.89050.20530.40080.164*0.286 (8)
H13F0.90170.07590.46540.164*0.286 (8)
C140.8337 (4)0.2256 (7)0.3712 (7)0.072 (2)0.714 (8)
H14A0.85390.26500.43500.108*0.714 (8)
H14B0.79820.28470.33320.108*0.714 (8)
H14C0.87320.20840.33410.108*0.714 (8)
C14'0.7827 (11)0.1702 (19)0.2853 (13)0.080 (6)0.286 (8)
H14D0.73220.15820.25160.121*0.286 (8)
H14E0.81620.13550.24400.121*0.286 (8)
H14F0.79230.26250.29670.121*0.286 (8)
C150.3209 (2)0.4448 (4)0.4915 (3)0.0431 (9)
H15A0.30390.44520.41980.052*
H15B0.34330.52880.51020.052*
C160.2551 (2)0.4253 (3)0.5442 (3)0.0377 (8)
C170.2655 (2)0.4019 (5)0.6469 (3)0.0528 (10)
H170.31530.39800.68490.063*
C180.2052 (2)0.3841 (5)0.6957 (3)0.0532 (11)
H180.21420.36900.76730.064*
C190.1325 (2)0.3875 (3)0.6443 (3)0.0382 (8)
C200.1231 (2)0.4119 (5)0.5426 (3)0.0550 (11)
H200.07340.41610.50430.066*
C210.1835 (2)0.4307 (5)0.4932 (3)0.0549 (11)
H210.17460.44780.42190.066*
C220.0654 (2)0.3722 (4)0.6988 (3)0.0459 (9)
C230.0852 (3)0.2921 (5)0.7956 (3)0.0615 (11)
H23A0.10470.20800.78050.092*
H23B0.04140.27940.82510.092*
H23C0.12210.33860.84240.092*
C240.0407 (3)0.5107 (5)0.7246 (4)0.0754 (15)
H24A0.00340.50450.75430.113*
H24B0.03030.56260.66410.113*
H24C0.07980.55170.77140.113*
C250.0003 (2)0.3024 (5)0.6312 (4)0.0649 (12)
H25A0.01680.21870.61030.097*
H25B0.01700.35570.57290.097*
H25C0.03970.28920.66840.097*
N10.48540 (15)0.2483 (3)0.5661 (2)0.0333 (6)
N20.37630 (16)0.3421 (3)0.5169 (2)0.0353 (6)
O10.55870 (15)0.5901 (2)0.2126 (2)0.0442 (6)
H1A0.525 (2)0.546 (4)0.235 (3)0.066*
H1B0.556 (3)0.6725 (19)0.209 (3)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0513 (5)0.0360 (4)0.0371 (4)0.0030 (4)0.0140 (4)0.0004 (3)
C10.0419 (18)0.0288 (16)0.0323 (16)0.0043 (14)0.0180 (14)0.0020 (13)
C20.0445 (19)0.0341 (18)0.047 (2)0.0023 (15)0.0157 (16)0.0088 (15)
C30.0415 (19)0.0288 (16)0.0351 (17)0.0036 (14)0.0090 (15)0.0034 (13)
C40.0428 (18)0.0371 (18)0.0269 (16)0.0023 (14)0.0043 (14)0.0020 (13)
C50.0401 (18)0.0248 (15)0.0344 (17)0.0064 (13)0.0090 (14)0.0005 (12)
C60.0362 (17)0.0407 (18)0.0309 (17)0.0022 (14)0.0040 (14)0.0005 (14)
C70.046 (2)0.046 (2)0.0277 (17)0.0003 (16)0.0047 (15)0.0005 (14)
C80.0364 (18)0.0312 (17)0.0402 (18)0.0057 (14)0.0059 (15)0.0048 (13)
C90.043 (2)0.047 (2)0.0370 (19)0.0046 (16)0.0062 (15)0.0041 (15)
C100.048 (2)0.055 (2)0.0267 (17)0.0061 (17)0.0065 (15)0.0049 (15)
C110.0412 (19)0.046 (2)0.042 (2)0.0009 (16)0.0138 (16)0.0027 (16)
C120.063 (4)0.099 (6)0.059 (4)0.001 (4)0.019 (3)0.028 (4)
C12'0.127 (18)0.048 (10)0.19 (2)0.011 (11)0.117 (18)0.025 (12)
C130.059 (4)0.091 (5)0.073 (5)0.039 (4)0.030 (3)0.012 (4)
C13'0.047 (10)0.22 (3)0.065 (12)0.012 (14)0.020 (9)0.004 (16)
C140.059 (4)0.063 (4)0.105 (6)0.009 (3)0.045 (4)0.004 (4)
C14'0.099 (14)0.085 (13)0.071 (11)0.030 (11)0.054 (10)0.024 (9)
C150.042 (2)0.0412 (19)0.047 (2)0.0041 (15)0.0108 (17)0.0045 (16)
C160.0409 (19)0.0320 (17)0.0409 (19)0.0025 (14)0.0090 (15)0.0021 (14)
C170.0345 (19)0.084 (3)0.040 (2)0.0040 (19)0.0053 (16)0.0035 (19)
C180.040 (2)0.084 (3)0.0345 (19)0.005 (2)0.0060 (16)0.0025 (19)
C190.0384 (19)0.0323 (17)0.0443 (19)0.0036 (14)0.0082 (15)0.0051 (14)
C200.038 (2)0.076 (3)0.048 (2)0.004 (2)0.0007 (17)0.011 (2)
C210.050 (2)0.074 (3)0.040 (2)0.004 (2)0.0046 (18)0.0118 (19)
C220.041 (2)0.041 (2)0.058 (2)0.0041 (16)0.0158 (18)0.0008 (17)
C230.062 (3)0.066 (3)0.062 (3)0.009 (2)0.023 (2)0.007 (2)
C240.080 (3)0.052 (3)0.109 (4)0.010 (2)0.058 (3)0.001 (3)
C250.045 (2)0.069 (3)0.079 (3)0.010 (2)0.007 (2)0.012 (2)
N10.0390 (15)0.0285 (13)0.0340 (14)0.0035 (11)0.0107 (12)0.0051 (11)
N20.0404 (16)0.0305 (14)0.0373 (15)0.0010 (12)0.0130 (12)0.0010 (11)
O10.0508 (15)0.0368 (13)0.0481 (15)0.0018 (12)0.0171 (12)0.0024 (11)
Geometric parameters (Å, º) top
C1—N21.312 (4)C13—H13C0.9600
C1—N11.319 (4)C13'—H13D0.9600
C1—H10.9600C13'—H13E0.9600
C2—N21.475 (4)C13'—H13F0.9600
C2—C31.536 (5)C14—H14A0.9600
C2—H2A0.9600C14—H14B0.9600
C2—H2B0.9600C14—H14C0.9600
C3—N11.463 (4)C14'—H14D0.9600
C3—H3A0.9600C14'—H14E0.9600
C3—H3B0.9600C14'—H14F0.9600
C4—N11.458 (4)C15—N21.449 (4)
C4—C51.511 (5)C15—C161.506 (5)
C4—H4A0.9600C15—H15A0.9600
C4—H4B0.9600C15—H15B0.9600
C5—C101.383 (5)C16—C211.365 (5)
C5—C61.398 (5)C16—C171.381 (5)
C6—C71.380 (5)C17—C181.386 (6)
C6—H60.9600C17—H170.9600
C7—C81.392 (5)C18—C191.383 (5)
C7—H70.9600C18—H180.9600
C8—C91.392 (5)C19—C201.372 (5)
C8—C111.539 (5)C19—C221.538 (5)
C9—C101.387 (5)C20—C211.393 (6)
C9—H90.9600C20—H200.9600
C10—H100.9600C21—H210.9600
C11—C121.497 (7)C22—C231.525 (6)
C11—C12'1.498 (16)C22—C241.534 (6)
C11—C13'1.517 (18)C22—C251.535 (6)
C11—C141.532 (7)C23—H23A0.9599
C11—C131.544 (7)C23—H23B0.9599
C11—C14'1.567 (15)C23—H23C0.9599
C12—H12A0.9600C24—H24A0.9599
C12—H12B0.9600C24—H24B0.9599
C12—H12C0.9600C24—H24C0.9599
C12'—H12D0.9600C25—H25A0.9599
C12'—H12E0.9600C25—H25B0.9599
C12'—H12F0.9600C25—H25C0.9599
C13—H13A0.9600O1—H1A0.85 (3)
C13—H13B0.9600O1—H1B0.839 (18)
N2—C1—N1113.4 (3)H13D—C13'—H13E109.5
N2—C1—H1123.3C11—C13'—H13F109.5
N1—C1—H1123.3H13D—C13'—H13F109.5
N2—C2—C3102.7 (3)H13E—C13'—H13F109.5
N2—C2—H2A111.2C11—C14—H14A109.5
C3—C2—H2A111.2C11—C14—H14B109.5
N2—C2—H2B111.2H14A—C14—H14B109.5
C3—C2—H2B111.2C11—C14—H14C109.5
H2A—C2—H2B109.1H14A—C14—H14C109.5
N1—C3—C2103.1 (3)H14B—C14—H14C109.5
N1—C3—H3A111.1C11—C14'—H14D109.5
C2—C3—H3A111.1C11—C14'—H14E109.5
N1—C3—H3B111.1H14D—C14'—H14E109.5
C2—C3—H3B111.1C11—C14'—H14F109.5
H3A—C3—H3B109.1H14D—C14'—H14F109.5
N1—C4—C5114.2 (3)H14E—C14'—H14F109.5
N1—C4—H4A108.7N2—C15—C16111.9 (3)
C5—C4—H4A108.7N2—C15—H15A109.2
N1—C4—H4B108.7C16—C15—H15A109.2
C5—C4—H4B108.7N2—C15—H15B109.2
H4A—C4—H4B107.6C16—C15—H15B109.2
C10—C5—C6117.9 (3)H15A—C15—H15B107.9
C10—C5—C4119.2 (3)C21—C16—C17117.6 (4)
C6—C5—C4122.8 (3)C21—C16—C15121.7 (3)
C7—C6—C5120.4 (3)C17—C16—C15120.7 (3)
C7—C6—H6119.8C16—C17—C18120.9 (4)
C5—C6—H6119.8C16—C17—H17119.5
C6—C7—C8122.5 (3)C18—C17—H17119.5
C6—C7—H7118.8C19—C18—C17121.9 (4)
C8—C7—H7118.8C19—C18—H18119.1
C9—C8—C7116.2 (3)C17—C18—H18119.1
C9—C8—C11122.7 (3)C20—C19—C18116.5 (4)
C7—C8—C11121.1 (3)C20—C19—C22121.4 (3)
C10—C9—C8122.0 (3)C18—C19—C22122.0 (3)
C10—C9—H9119.0C19—C20—C21121.9 (4)
C8—C9—H9119.0C19—C20—H20119.1
C5—C10—C9121.0 (3)C21—C20—H20119.1
C5—C10—H10119.5C16—C21—C20121.3 (4)
C9—C10—H10119.5C16—C21—H21119.4
C12'—C11—C13'116.1 (15)C20—C21—H21119.4
C12—C11—C14109.9 (5)C23—C22—C24109.3 (4)
C12—C11—C8111.1 (4)C23—C22—C25107.7 (3)
C12'—C11—C8107.4 (8)C24—C22—C25109.3 (4)
C13'—C11—C8109.9 (8)C23—C22—C19111.8 (3)
C14—C11—C8108.1 (4)C24—C22—C19107.7 (3)
C12—C11—C13108.1 (5)C25—C22—C19111.1 (3)
C14—C11—C13107.1 (5)C22—C23—H23A109.5
C8—C11—C13112.6 (4)C22—C23—H23B109.5
C12'—C11—C14'107.6 (13)H23A—C23—H23B109.5
C13'—C11—C14'104.3 (12)C22—C23—H23C109.5
C8—C11—C14'111.6 (7)H23A—C23—H23C109.5
C11—C12—H12A109.5H23B—C23—H23C109.5
C11—C12—H12B109.5C22—C24—H24A109.5
H12A—C12—H12B109.5C22—C24—H24B109.5
C11—C12—H12C109.5H24A—C24—H24B109.5
H12A—C12—H12C109.5C22—C24—H24C109.5
H12B—C12—H12C109.5H24A—C24—H24C109.5
C11—C12'—H12D109.5H24B—C24—H24C109.5
C11—C12'—H12E109.5C22—C25—H25A109.5
H12D—C12'—H12E109.5C22—C25—H25B109.5
C11—C12'—H12F109.5H25A—C25—H25B109.5
H12D—C12'—H12F109.5C22—C25—H25C109.5
H12E—C12'—H12F109.5H25A—C25—H25C109.5
C11—C13—H13A109.5H25B—C25—H25C109.5
C11—C13—H13B109.5C1—N1—C4124.5 (3)
H13A—C13—H13B109.5C1—N1—C3110.2 (3)
C11—C13—H13C109.5C4—N1—C3124.1 (3)
H13A—C13—H13C109.5C1—N2—C15126.6 (3)
H13B—C13—H13C109.5C1—N2—C2110.1 (3)
C11—C13'—H13D109.5C15—N2—C2122.9 (3)
C11—C13'—H13E109.5H1A—O1—H1B120 (5)
N2—C2—C3—N17.2 (3)C15—C16—C17—C18179.9 (4)
N1—C4—C5—C10155.8 (3)C16—C17—C18—C190.7 (7)
N1—C4—C5—C628.6 (4)C17—C18—C19—C201.2 (6)
C10—C5—C6—C70.8 (5)C17—C18—C19—C22178.0 (4)
C4—C5—C6—C7174.8 (3)C18—C19—C20—C210.8 (6)
C5—C6—C7—C80.8 (5)C22—C19—C20—C21177.6 (4)
C6—C7—C8—C91.1 (5)C17—C16—C21—C200.7 (6)
C6—C7—C8—C11178.1 (3)C15—C16—C21—C20179.7 (4)
C7—C8—C9—C100.2 (5)C19—C20—C21—C160.2 (7)
C11—C8—C9—C10179.3 (3)C20—C19—C22—C23156.2 (4)
C6—C5—C10—C92.1 (5)C18—C19—C22—C2327.1 (5)
C4—C5—C10—C9173.7 (3)C20—C19—C22—C2483.8 (5)
C8—C9—C10—C51.8 (6)C18—C19—C22—C2492.9 (5)
C9—C8—C11—C12134.6 (5)C20—C19—C22—C2535.9 (5)
C7—C8—C11—C1246.3 (6)C18—C19—C22—C25147.4 (4)
C9—C8—C11—C12'77.5 (13)N2—C1—N1—C4170.4 (3)
C7—C8—C11—C12'103.5 (13)N2—C1—N1—C32.6 (4)
C9—C8—C11—C13'49.7 (13)C5—C4—N1—C1120.4 (3)
C7—C8—C11—C13'129.4 (13)C5—C4—N1—C373.4 (4)
C9—C8—C11—C14104.8 (5)C2—C3—N1—C16.3 (3)
C7—C8—C11—C1474.3 (5)C2—C3—N1—C4174.2 (3)
C9—C8—C11—C1313.3 (6)N1—C1—N2—C15175.2 (3)
C7—C8—C11—C13167.7 (5)N1—C1—N2—C22.6 (4)
C9—C8—C11—C14'164.9 (9)C16—C15—N2—C1121.4 (4)
C7—C8—C11—C14'14.2 (10)C16—C15—N2—C266.8 (4)
N2—C15—C16—C21130.9 (4)C3—C2—N2—C16.2 (4)
N2—C15—C16—C1749.5 (5)C3—C2—N2—C15179.2 (3)
C21—C16—C17—C180.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.86 (4)2.36 (4)3.206 (3)174 (4)
C3—H3B···O1ii0.962.533.304 (4)138
C17—H17···O1i0.962.473.423 (5)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H35N2+·Cl·H2O
Mr417.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)18.205 (4), 10.148 (2), 13.452 (3)
β (°) 100.01 (3)
V3)2447.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.43 × 0.17 × 0.05
Data collection
DiffractometerRigaku AFC 8S Mercury CCD
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.929, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
17800, 4297, 2886
Rint0.072
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.207, 1.03
No. of reflections4297
No. of parameters299
No. of restraints50
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl1i0.86 (4)2.36 (4)3.206 (3)174 (4)
C3—H3B···O1ii0.962.533.304 (4)138
C17—H17···O1i0.962.473.423 (5)175
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (BAP: 2008-Güdümlü3) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArslan, H., VanDerveer, D., Gök, Y., Özdemir, I. & Çetinkaya, B. (2009a). Acta Cryst. E65, o109–o110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2009b). Acta Cryst. E65, o121–o122.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGlorius, F. (2007). Topics in Organometallic Chemistry Vol. 21, N-Heterocyclic Carbenes in Transition Metal Catalysis. Heidelberg: Springer.  Google Scholar
First citationHerrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.  CAS Google Scholar
First citationJacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNolan, S. P. (2006). N-Heterocyclic Carbenes in Synthesis. Weinheim: Wiley.  Google Scholar
First citationÖzdemir, I., Alıcı, B., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004b). J. Mol. Catal. A Chem. 217, 37–40.  Google Scholar
First citationÖzdemir, I., Gök, Y., Gürbüz, N., Çetinkaya, E. & Çetinkaya, B. (2004a). Heteroat. Chem. 15, 419–423.  Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaşar, S., Özdemir, I., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem. 12, 2142–2149.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o310-o311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds