organic compounds
(E)-2-[(2-Hydroxy-5-nitrophenyl)iminiomethyl]-4-nitrophenolate
aDepartment of Chemistry, Morgan State University, Baltimore, MD 21251, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title molecule, C13H9N3O6, consists of a 2-hydroxy-5-nitrophenyliminio group and a 4-nitrophenolate group bonded to a methylene C atom with both of the planar six-membered rings nearly in the plane of the molecule [dihedral angle = 1.3 (4)°]. Each of the nitro O atoms is twisted slightly out of the plane of the molecule. The amine group forms an intramolecular hydrogen bond with both nearby O atoms, each of which has partial occupancy of attached H atoms [0.36 (3) and 0.64 (3)]. An extended π-delocalization throughout the entire molecule exists producing a zwitterionic effect in this region of the molecule. The shortened phenolate C—O bond [1.2749 (19)°], in concert with the slightly longer phenol C—O bond [1.3316 (19) Å], provides evidence for this effect. The crystal packing is influenced by extensive strong intermolecular O—H⋯O hydrogen bonding between the depicted phenolate and hydroxy O atoms and their respective H atoms within the π-delocalized region of the molecule. As a result, molecules are linked into an infinite polymeric chain diagonally along the [110] plane of the in an alternate inverted pattern. A MOPAC AM1 calculation provides support for these observations.
Related literature
For related structures, see: Butcher et al. (2007); Ersanlı et al. (2003); Gül et al. (2007); Hijji et al. (2008); Odabaşoğlu et al. (2006); Jasinski et al. (2007). For related literature, see: Schmidt & Polik (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell CrysAlisPro; data reduction: CrysAlisPro program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809000543/hg2463sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000543/hg2463Isup2.hkl
The title compound was synthesized as follows: 2-amino-4-nitrophenol (0.15 g, 1 mmol) and 2-hydroxy-5-nitrobenzaldehyde (0.17 g, 1 mmol) were mixed in a loosely capped vial. The reaction mixture was allowed to heat at full power in a conventional microwave for 8 minutes. The compound was recrystallized from ethanol affording a brown solid (0.20 g, 68%). (mp 591–593 K) 1H-NMR (400 MHz, DMSO-d6), δ (p.p.m.): 14.64 (s, br, 1H), 11.74 (s, br, 1H) 9.37 (s, 1H), 8.72 (d, J = 2.87 Hz, 1 H), 8.41 (d, J = 3.3 Hz, 1H), 8..27 (dd, J = 9.2, 3.1 Hz, 1H), 8.13 (1H, dd, J = 9.06, 2.7 Hz, 1 H), 7.16 (d, J = 9.1 Hz, 1H), 7.09 (d, J = 9.2 Hz, 1H), 13C-NMR (100 MHz, DMSO-d6) δ (p.p.m.): 167.90, 162.13, 157.48, 139.89, 138.76, 133.40, 128.95, 128.69, 124.51, 118.78, 118.25, 116.54, 115.24.
H1A, H1O and H2O were obtained from a difference Fourier map. The occupancies of H1O and H2O refined to values of 0.36 (3) and 0.64 (3), respectively. The rest of the H atoms were placed in their calculated positions and then refined using the riding model with C(N,O)—H = 0.82 to 0.93 Å, and with Uiso(H) = 1.15–1.20Ueq(C,N).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of C13H9N3O6, showing the atom numbering scheme and 50% probability displacement ellipsoids. H1O (0.36 (3) occupancy) has been omitted from O1 in the diagram and only the predominant component, H2O (0.64 (3) occupancy), has been shown. Dashed lines indicate intramolecular N–H···O hydrogen bonds. | |
Fig. 2. The molecular packing for C13H9N3O6 viewed down the c axis. Dashed lines indicate intermolecular O–H···O, C–H···O and intramolecular N–H···O hydrogen bonds. The predominately occupied (0.64) hydrogen atom (H2O) is shown attached to O2 while H1O at 0.36 occupancy is not depicted. |
C13H9N3O6 | F(000) = 624 |
Mr = 303.23 | Dx = 1.553 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3209 reflections |
a = 7.9649 (1) Å | θ = 3.9–73.2° |
b = 8.6110 (1) Å | µ = 0.13 mm−1 |
c = 19.1190 (3) Å | T = 296 K |
β = 98.433 (2)° | Prism, orange-brown |
V = 1297.11 (3) Å3 | 0.37 × 0.27 × 0.18 mm |
Z = 4 |
Oxford Diffraction Gemini R diffractometer | 2495 independent reflections |
Radiation source: fine-focus sealed tube | 1819 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 26.2°, θmin = 2.6° |
ϕ and ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −8→10 |
Tmin = 0.954, Tmax = 0.978 | l = −23→23 |
6432 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0833P)2] where P = (Fo2 + 2Fc2)/3 |
2495 reflections | (Δ/σ)max < 0.001 |
202 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C13H9N3O6 | V = 1297.11 (3) Å3 |
Mr = 303.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.9649 (1) Å | µ = 0.13 mm−1 |
b = 8.6110 (1) Å | T = 296 K |
c = 19.1190 (3) Å | 0.37 × 0.27 × 0.18 mm |
β = 98.433 (2)° |
Oxford Diffraction Gemini R diffractometer | 2495 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 1819 reflections with I > 2σ(I) |
Tmin = 0.954, Tmax = 0.978 | Rint = 0.023 |
6432 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
2495 reflections | Δρmin = −0.17 e Å−3 |
202 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.03590 (18) | 0.47993 (15) | 0.16546 (7) | 0.0582 (4) | |
H1O | 0.0038 | 0.5417 | 0.1934 | 0.070* | 0.36 (3) |
O2 | 0.11482 (19) | 0.12327 (15) | 0.24445 (7) | 0.0600 (4) | |
H2O | 0.0821 | 0.0752 | 0.2769 | 0.072* | 0.64 (3) |
O3 | 0.1437 (2) | 0.91245 (18) | −0.08314 (9) | 0.0810 (5) | |
O4 | 0.32836 (18) | 0.73565 (16) | −0.09586 (7) | 0.0624 (4) | |
O5 | 0.57970 (19) | −0.17153 (18) | 0.04796 (7) | 0.0688 (4) | |
O6 | 0.5900 (2) | −0.35343 (18) | 0.12493 (8) | 0.0745 (5) | |
N1 | 0.22628 (18) | 0.25045 (16) | 0.13638 (7) | 0.0452 (4) | |
H1N | 0.1589 | 0.2915 | 0.1624 | 0.054* | |
N2 | 0.2182 (2) | 0.79148 (18) | −0.06471 (8) | 0.0518 (4) | |
N3 | 0.54401 (19) | −0.22526 (18) | 0.10334 (8) | 0.0515 (4) | |
C1 | 0.0787 (2) | 0.5537 (2) | 0.11302 (9) | 0.0448 (4) | |
C2 | 0.0151 (2) | 0.7055 (2) | 0.09352 (10) | 0.0496 (4) | |
H2A | −0.0587 | 0.7535 | 0.1202 | 0.060* | |
C3 | 0.0605 (2) | 0.7798 (2) | 0.03718 (9) | 0.0480 (4) | |
H3A | 0.0173 | 0.8782 | 0.0253 | 0.058* | |
C4 | 0.1732 (2) | 0.70949 (19) | −0.00398 (9) | 0.0440 (4) | |
C5 | 0.2393 (2) | 0.56601 (19) | 0.01239 (9) | 0.0432 (4) | |
H5A | 0.3139 | 0.5216 | −0.0150 | 0.052* | |
C6 | 0.1948 (2) | 0.48596 (18) | 0.07028 (8) | 0.0413 (4) | |
C7 | 0.2629 (2) | 0.3352 (2) | 0.08516 (9) | 0.0451 (4) | |
H7A | 0.3376 | 0.2956 | 0.0565 | 0.054* | |
C8 | 0.2832 (2) | 0.09769 (19) | 0.15516 (8) | 0.0423 (4) | |
C9 | 0.2213 (2) | 0.0350 (2) | 0.21425 (8) | 0.0468 (4) | |
C10 | 0.2737 (3) | −0.1128 (2) | 0.23769 (9) | 0.0552 (5) | |
H10A | 0.2348 | −0.1551 | 0.2771 | 0.066* | |
C11 | 0.3830 (2) | −0.1967 (2) | 0.20269 (9) | 0.0521 (5) | |
H11A | 0.4196 | −0.2947 | 0.2187 | 0.062* | |
C12 | 0.4378 (2) | −0.1335 (2) | 0.14340 (8) | 0.0443 (4) | |
C13 | 0.3896 (2) | 0.01318 (19) | 0.11899 (8) | 0.0434 (4) | |
H13A | 0.4281 | 0.0539 | 0.0792 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0756 (9) | 0.0495 (7) | 0.0590 (8) | 0.0052 (7) | 0.0411 (7) | 0.0022 (6) |
O2 | 0.0794 (9) | 0.0546 (8) | 0.0554 (8) | 0.0097 (7) | 0.0411 (7) | 0.0059 (6) |
O3 | 0.1039 (12) | 0.0618 (9) | 0.0839 (11) | 0.0172 (9) | 0.0357 (9) | 0.0286 (8) |
O4 | 0.0727 (9) | 0.0637 (8) | 0.0571 (8) | −0.0062 (7) | 0.0302 (7) | 0.0013 (7) |
O5 | 0.0802 (10) | 0.0740 (10) | 0.0606 (8) | 0.0124 (8) | 0.0375 (7) | −0.0015 (7) |
O6 | 0.0804 (10) | 0.0618 (9) | 0.0859 (11) | 0.0272 (8) | 0.0270 (8) | 0.0051 (8) |
N1 | 0.0526 (8) | 0.0419 (7) | 0.0464 (8) | 0.0009 (6) | 0.0247 (6) | −0.0008 (6) |
N2 | 0.0598 (9) | 0.0486 (9) | 0.0496 (8) | −0.0094 (7) | 0.0163 (7) | −0.0001 (7) |
N3 | 0.0475 (8) | 0.0537 (9) | 0.0547 (9) | 0.0054 (7) | 0.0127 (7) | −0.0049 (7) |
C1 | 0.0481 (9) | 0.0434 (9) | 0.0467 (9) | −0.0053 (8) | 0.0193 (7) | −0.0017 (7) |
C2 | 0.0519 (10) | 0.0444 (9) | 0.0572 (10) | 0.0024 (8) | 0.0233 (8) | −0.0053 (8) |
C3 | 0.0513 (10) | 0.0380 (9) | 0.0566 (10) | 0.0011 (7) | 0.0146 (8) | −0.0003 (8) |
C4 | 0.0470 (9) | 0.0397 (9) | 0.0469 (9) | −0.0046 (7) | 0.0121 (7) | −0.0017 (7) |
C5 | 0.0442 (9) | 0.0413 (9) | 0.0473 (9) | −0.0035 (7) | 0.0171 (7) | −0.0056 (7) |
C6 | 0.0436 (9) | 0.0372 (8) | 0.0459 (9) | −0.0030 (7) | 0.0159 (7) | −0.0041 (7) |
C7 | 0.0480 (9) | 0.0462 (9) | 0.0459 (9) | −0.0011 (8) | 0.0228 (7) | −0.0025 (7) |
C8 | 0.0490 (9) | 0.0393 (8) | 0.0407 (8) | −0.0009 (7) | 0.0139 (7) | 0.0008 (7) |
C9 | 0.0552 (10) | 0.0489 (10) | 0.0405 (8) | 0.0009 (8) | 0.0207 (8) | −0.0001 (7) |
C10 | 0.0739 (13) | 0.0542 (10) | 0.0420 (9) | 0.0033 (9) | 0.0237 (9) | 0.0097 (8) |
C11 | 0.0639 (12) | 0.0459 (9) | 0.0483 (9) | 0.0081 (8) | 0.0145 (8) | 0.0081 (8) |
C12 | 0.0437 (9) | 0.0476 (9) | 0.0437 (8) | 0.0022 (7) | 0.0127 (7) | −0.0030 (7) |
C13 | 0.0475 (9) | 0.0447 (9) | 0.0411 (8) | −0.0049 (7) | 0.0167 (7) | 0.0017 (7) |
O1—C1 | 1.2749 (19) | C3—C4 | 1.414 (2) |
O1—H1O | 0.8200 | C3—H3A | 0.9300 |
O2—C9 | 1.3316 (19) | C4—C5 | 1.361 (2) |
O2—H2O | 0.8200 | C5—C6 | 1.393 (2) |
O3—N2 | 1.225 (2) | C5—H5A | 0.9300 |
O4—N2 | 1.2283 (19) | C6—C7 | 1.420 (2) |
O5—N3 | 1.2264 (19) | C7—H7A | 0.9300 |
O6—N3 | 1.216 (2) | C8—C13 | 1.378 (2) |
N1—C7 | 1.288 (2) | C8—C9 | 1.405 (2) |
N1—C8 | 1.420 (2) | C9—C10 | 1.393 (3) |
N1—H1N | 0.8600 | C10—C11 | 1.378 (2) |
N2—C4 | 1.448 (2) | C10—H10A | 0.9300 |
N3—C12 | 1.455 (2) | C11—C12 | 1.384 (2) |
C1—C2 | 1.431 (2) | C11—H11A | 0.9300 |
C1—C6 | 1.444 (2) | C12—C13 | 1.381 (2) |
C2—C3 | 1.347 (2) | C13—H13A | 0.9300 |
C2—H2A | 0.9300 | ||
C1—O1—H1O | 109.5 | C6—C5—H5A | 120.1 |
C9—O2—H2O | 109.5 | C5—C6—C7 | 118.51 (14) |
C7—N1—C8 | 128.10 (14) | C5—C6—C1 | 120.56 (15) |
C7—N1—H1N | 116.0 | C7—C6—C1 | 120.92 (14) |
C8—N1—H1N | 116.0 | N1—C7—C6 | 123.19 (15) |
O3—N2—O4 | 122.95 (15) | N1—C7—H7A | 118.4 |
O3—N2—C4 | 118.60 (15) | C6—C7—H7A | 118.4 |
O4—N2—C4 | 118.45 (15) | C13—C8—C9 | 121.00 (15) |
O6—N3—O5 | 122.63 (16) | C13—C8—N1 | 124.02 (14) |
O6—N3—C12 | 118.91 (15) | C9—C8—N1 | 114.98 (14) |
O5—N3—C12 | 118.43 (15) | O2—C9—C10 | 124.19 (15) |
O1—C1—C2 | 122.32 (15) | O2—C9—C8 | 116.76 (15) |
O1—C1—C6 | 120.74 (15) | C10—C9—C8 | 119.05 (15) |
C2—C1—C6 | 116.94 (14) | C11—C10—C9 | 120.25 (15) |
C3—C2—C1 | 121.08 (15) | C11—C10—H10A | 119.9 |
C3—C2—H2A | 119.5 | C9—C10—H10A | 119.9 |
C1—C2—H2A | 119.5 | C10—C11—C12 | 119.28 (16) |
C2—C3—C4 | 120.53 (16) | C10—C11—H11A | 120.4 |
C2—C3—H3A | 119.7 | C12—C11—H11A | 120.4 |
C4—C3—H3A | 119.7 | C13—C12—C11 | 122.07 (16) |
C5—C4—C3 | 121.09 (15) | C13—C12—N3 | 118.20 (14) |
C5—C4—N2 | 119.60 (14) | C11—C12—N3 | 119.68 (16) |
C3—C4—N2 | 119.31 (15) | C8—C13—C12 | 118.30 (14) |
C4—C5—C6 | 119.79 (15) | C8—C13—H13A | 120.8 |
C4—C5—H5A | 120.1 | C12—C13—H13A | 120.8 |
O1—C1—C2—C3 | −178.96 (18) | C7—N1—C8—C13 | −0.8 (3) |
C6—C1—C2—C3 | 0.9 (3) | C7—N1—C8—C9 | 179.85 (17) |
C1—C2—C3—C4 | −0.3 (3) | C13—C8—C9—O2 | −177.90 (15) |
C2—C3—C4—C5 | −0.4 (3) | N1—C8—C9—O2 | 1.5 (2) |
C2—C3—C4—N2 | 179.32 (16) | C13—C8—C9—C10 | 2.3 (3) |
O3—N2—C4—C5 | 172.16 (17) | N1—C8—C9—C10 | −178.38 (16) |
O4—N2—C4—C5 | −7.1 (2) | O2—C9—C10—C11 | 179.31 (18) |
O3—N2—C4—C3 | −7.6 (3) | C8—C9—C10—C11 | −0.9 (3) |
O4—N2—C4—C3 | 173.17 (15) | C9—C10—C11—C12 | −1.0 (3) |
C3—C4—C5—C6 | 0.5 (3) | C10—C11—C12—C13 | 1.6 (3) |
N2—C4—C5—C6 | −179.26 (15) | C10—C11—C12—N3 | −175.91 (16) |
C4—C5—C6—C7 | 178.68 (15) | O6—N3—C12—C13 | 178.63 (16) |
C4—C5—C6—C1 | 0.2 (3) | O5—N3—C12—C13 | −3.4 (3) |
O1—C1—C6—C5 | 179.03 (16) | O6—N3—C12—C11 | −3.7 (3) |
C2—C1—C6—C5 | −0.8 (2) | O5—N3—C12—C11 | 174.28 (18) |
O1—C1—C6—C7 | 0.5 (3) | C9—C8—C13—C12 | −1.7 (2) |
C2—C1—C6—C7 | −179.29 (16) | N1—C8—C13—C12 | 179.01 (16) |
C8—N1—C7—C6 | 178.42 (16) | C11—C12—C13—C8 | −0.3 (3) |
C5—C6—C7—N1 | −178.28 (16) | N3—C12—C13—C8 | 177.31 (15) |
C1—C6—C7—N1 | 0.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.82 | 1.77 | 2.5570 (16) | 161 |
O2—H2O···O1ii | 0.82 | 1.75 | 2.5570 (16) | 166 |
N1—H1N···O1 | 0.86 | 1.90 | 2.6001 (19) | 138 |
C3—H3A···O3iii | 0.93 | 2.56 | 3.295 (2) | 137 |
C7—H7A···O4iv | 0.93 | 2.67 | 3.289 (2) | 125 |
C7—H7A···O5v | 0.93 | 2.44 | 3.312 (2) | 156 |
C10—H10A···O4vi | 0.93 | 2.53 | 3.321 (2) | 143 |
C13—H13A···O4iv | 0.93 | 2.64 | 3.195 (2) | 119 |
C13—H13A···O5v | 0.93 | 2.63 | 3.512 (2) | 160 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z; (vi) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H9N3O6 |
Mr | 303.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.9649 (1), 8.6110 (1), 19.1190 (3) |
β (°) | 98.433 (2) |
V (Å3) | 1297.11 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.37 × 0.27 × 0.18 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.954, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6432, 2495, 1819 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.621 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.129, 1.05 |
No. of reflections | 2495 |
No. of parameters | 202 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O···O2i | 0.82 | 1.77 | 2.5570 (16) | 160.5 |
O2—H2O···O1ii | 0.82 | 1.75 | 2.5570 (16) | 166.2 |
N1—H1N···O1 | 0.86 | 1.90 | 2.6001 (19) | 137.5 |
C3—H3A···O3iii | 0.93 | 2.56 | 3.295 (2) | 136.7 |
C7—H7A···O4iv | 0.93 | 2.67 | 3.289 (2) | 124.6 |
C7—H7A···O5v | 0.93 | 2.44 | 3.312 (2) | 156.2 |
C10—H10A···O4vi | 0.93 | 2.53 | 3.321 (2) | 143.0 |
C13—H13A···O4iv | 0.93 | 2.64 | 3.195 (2) | 119.0 |
C13—H13A···O5v | 0.93 | 2.63 | 3.512 (2) | 159.6 |
Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+2, −z; (iv) −x+1, −y+1, −z; (v) −x+1, −y, −z; (vi) x, −y+1/2, z+1/2. |
Acknowledgements
Support to YMH and BB was provided by DOE-CETBR grant No. DE—FG02–03ER63580 and NSF-RISE Award No. HRD-0627276. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Vijesh, A. M. & Narayana, B. (2007). Acta Cryst. E63, o3748. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ersanlı, C. C., Albayrak, Ç., Odabaşoǧlu, M. & Erdönmez, A. (2003). Acta Cryst. C59, o601–o602. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gül, Z. S., Ağar, A. A. & Işık, Ş. (2007). Acta Cryst. E63, o4564. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hijji, Y. M., Barare, B., Kennedy, A. P. & Butcher, R. (2008). Sensors and Actuators B: Che., doi:10.1016/j.SnB.2008.11.045. Google Scholar
Jasinski, J. P., Butcher, R. J., Narayana, B., Swamy, M. T. & Yathirajan, H. S. (2007). Acta Cryst. E63, o4566–o4567. Web of Science CSD CrossRef IUCr Journals Google Scholar
Odabaşoğlu, M., Albayrak, C. & Büyükgüngör, O. (2006). Acta Cryst. E62, o1094–o1096. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlisPro and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA; URL: http://www.webmo.net. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have a wide range of application in chemistry. The title compound, a Schiff base derivative, was synthesized under microwave conditions and recrystallized from ethanol to give brown crystals. The structural data shows that it exists as an iminio-phenolate zwitterion in the solid state. Typically, keto-amine tautomer behavior has been observed in related derivative compounds (Butcher et al. (2007); Jasinski et al. (2007); Gül et al. (2007); Odabaşoğlu et al. (2006)); Ersanlı et al. (2003)). Compounds of this type can be used as anion sensors in acetonitrile (Hijji et al. (2008)) that tend to exist in the keto-amine form, which is generally favored over the phenol-imine form in the solid state. Introduction of electron deficient groups to the aromatic rings tends to increase the acidity of the phenolic proton.
The title molecule, C13H9N3O6, consists of a 2-hydroxy-5-nitrophenyliminio group and a 4-nitrophenolate group bonded to a methylene carbon atom with both of the planar six-membered rings nearly in the plane of the molecule. The dihedral angle between the mean planes of the phenyl and phenolate rings measures 1.3 (4)°. Each of the nitro oxygen atoms are twisted slightly out of the plane of the molecule [torsion angles = 172.16 (17)° (O3—N2—C4—C5); -7.1 (2)° (O4—N2—C4—C5); -7.6 (3)° (O3—N2—C4—C3); 173.17 (15)° (O4—N2—C4—C3); and 178.63 (16)° (O6—N3—C12—C13); -3.4 (3)° (O5—N3—C12—C13); 174.28 (18)° (O5—N3—C12—C11); -3.7 (3)° (O6—N3—C12—C11)]. The phenolate (O1) and hydroxy (O2) oxygen atoms are essentially in the plane of the molecule [torsion angles = 179.03 (16)° (O1—C1—C6—C5); 0.5 (3)° (O1—C1—C6—C7); 179.31 (18)° (O2—C9—C10—C11); -177.90 (15)° (C13—C8—C9—O2)]. The imino group forms an intramolecular hydrogen bond with each of the nearby oxygen atoms (O1 and O2) which have partial occupancy of hydrogen atoms (H1O [0.36 (3)] and H2O [0.64 (3)], respectively) (see Fig. 1 which shows only the predominant component, H2O, and Table 2). There appears to be an extended π delocalization effect throughout the entire molecule producing a zwitterionic effect in this region of the molecule. The shortened C1—O1 bond (1.2749 (19) Å in concert with the slightly longer C9—O2 bond (1.3316 (19) Å) provide structural evidence for this effect.
Crystal packing is influenced by extensive strong intermolecular O—H···O hydrogen bonding between the depicted phenolate and hydroxy oxygen atoms (O1 & O2) and their respective hydrogen atoms within the π delocalized region (O1—H1O(0.36)···O2; 2.5570 (16) Å) and O2—H2O(0.64)···O1; 2.5570 (16) Å) of the molecule. Additional weak intermolecular C—H···O hydrogen bond interactions occur involving the methylene carbon (C7) and the phenyl (C10 & C13) and phenolate (C3) groups (Fig. 2), respectively. All of the hydrogen bond interactions are summarized in Table 1. As a result the molecules are linked into an infinite polymeric chain diagonally along the [110] plane of the unit cell in an alternate inverted pattern (Fig. 2). In addition, weak Cg1–Cg1 (3.517 (2) Å; slippage = 1.09 (8)°; -x, 1 - y, -z) and Cg1–Cg2 (3.830 (6) Å; x, y - 1, z) π-π stacking ring interactions also occur where Cg1 = center of gravity of the C1–C6 ring and Cg2 = center of gravity of the C8–C13 ring.
After a MOPAC AMI calculation [Austin Model 1 approximation together with the Hartree-Fock closed-shell (restricted) wavefunction was used and minimizations were terminated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1] of the zwitterionic form with WebMO Pro (Schmidt, 2007). As a result of this energy minimization, the dihedral angle between the phenyl and phenolate rings changes from 1.3 (4)° in the crystal structure to 7.6 (6)°, producing a slightly more twisted molecule than the nearly planar molecule in the crystalline environment. Thus, it is apparent that the extensive hydrogen bonding and π-π stacking intermolecular interactions significantly influence crystal packing with this molecule.