metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11,13-Di­methyl-1,4,7,10-tetra­aza­cyclo­trideca-10,13-dienato)copper(II) per­chlorate

aChemical Technology & Medicine College, Jingchu University of Technology, Jingmen, Hubei 448000, People's Republic of China
*Correspondence e-mail: jclghxq@126.com

(Received 12 January 2009; accepted 14 January 2009; online 17 January 2009)

The title complex, [Cu(C11H21N4)]ClO4, comprises [CuII(L)]+ (L = 11,13-dimethyl-1,4,7,10-tetra­azacyclo­trideca-10,12-dien­ate) cations and a perchlorate anion. The Cu atom is located on a twofold crystallographic symmetry axis and is coordinated by four N atoms in a slightly distorted square-planar geometry. Inter­molecular N—H⋯O hydrogen bonds are present.

Related literature

For macrocyclic ligands containing four N atoms in a square-planar coordination geometry, see: Andrews et al. (1999[Andrews, P. C., Atwood, J. L., Barbour, L. J., Croucher, P. D., Nichols, P. J., Smith, N. O., Skelton, B. W., White, A. H. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 2927-2932.]); Kim et al. (2004[Kim, D. I., Kim, E. H., Bae, Z. U., Na, H. G., Choi, J. H. & Park, Y. C. (2004). J. Inclus. Phenom. Macrocycl. Chem. 49, 107-113.]); Richardson & Sievers (1972[Richardson, M. F. & Sievers, R. E. (1972). J. Am. Chem. Soc. 94, 4134-4139.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C11H21N4)]ClO4

  • Mr = 372.31

  • Orthorhombic, P b c n

  • a = 12.530 (5) Å

  • b = 14.469 (6) Å

  • c = 8.501 (4) Å

  • V = 1541.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 (2) K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.794, Tmax = 0.843

  • 6834 measured reflections

  • 1349 independent reflections

  • 950 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.216

  • S = 1.05

  • 1349 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1ii 0.91 2.02 2.917 (8) 168
Symmetry codes: (i) x, y, z-1; (ii) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Macrocyclic ligands containing four N atoms located in a square planar coordination geometry have been intensly studied during the past several decades (Richardson, et al., 1972; Andrews, et al., 1999; Kim, et al., 2004). Here,we report a macrocycle tetraaza copper(II) complex based on the condensation of triethylenetetraamine (trien) with acetylacetone in the presence of copper(II) perchlorate.

The geometry and labelling scheme for the crystal structure of the title complex are depicted in Figure 1. The coordination sphere for the CuII ion in the title complex, which coordinates to four N atoms from triethylenetetraamine, is square planar with a mean deviation from the plane formed by the Cu atom and four N atoms of 0.0929Å . The bond lengths of Cu1—N1 and Cu1—N2 are 1.809 (4) and 1.876 (4)Å , respectively, which are slightly shorter than the corresponding distances found in another macrocycle copper complex 13,14-benzo-2,4,9,11-tetramethyl- 1,5,8,12-tetraazacyclotetradeca-1,3,9,11-tetraenato(2-)copper(II) (Kim, et al., 2004).

Related literature top

For macrocyclic ligands containing four N atoms in a square-planar coordination geometry, see: Andrews et al. (1999); Kim et al. (2004); Richardson & Sievers (1972).

Experimental top

The title complex has been synthesized by the template method used commonly for synthesize metal complexes of macrocycle ligand. After the mixture, which is formed by acetylacetone, trien and Cu(ClO4)2.6H2O with a molar ratio 1:1:1 in methanol/water(v:v, 1:1), has been stirred for 6 h at 323 K, it was filtered and the filtrate was allowed to partial evaporate in air for one week to produce crystals suitable for X-ray diffraction with a yield of about 45%.

Refinement top

All the H atoms were constrained with C—H distances of 0.93, 0.96, 0.97 Å and N—H distances of 0.91 Å, respectively, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq (C or N) and 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
(11,13-Dimethyl-1,4,7,10-tetraazacyclotrideca-10,13-dienato)copper(II) perchlorate top
Crystal data top
[Cu(C11H21N4)]ClO4F(000) = 772
Mr = 372.31Dx = 1.605 Mg m3
Dm = 1.605 Mg m3
Dm measured by not measured
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1838 reflections
a = 12.530 (5) Åθ = 3.2–24.7°
b = 14.469 (6) ŵ = 1.61 mm1
c = 8.501 (4) ÅT = 293 K
V = 1541.2 (11) Å3Block, blue
Z = 40.15 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1349 independent reflections
Radiation source: fine-focus sealed tube950 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1412
Tmin = 0.794, Tmax = 0.843k = 1517
6834 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.144P)2 + 0.9336P]
where P = (Fo2 + 2Fc2)/3
1349 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Cu(C11H21N4)]ClO4V = 1541.2 (11) Å3
Mr = 372.31Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 12.530 (5) ŵ = 1.61 mm1
b = 14.469 (6) ÅT = 293 K
c = 8.501 (4) Å0.15 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1349 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
950 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.843Rint = 0.064
6834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 1.05Δρmax = 1.10 e Å3
1349 reflectionsΔρmin = 0.59 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.32069 (5)0.25000.0431 (4)
Cl10.00000.14239 (18)0.75000.0660 (7)
O10.0525 (6)0.2000 (6)0.6429 (9)0.139 (3)
O20.0806 (8)0.0904 (4)0.8238 (11)0.160 (3)
N10.0904 (3)0.4014 (3)0.1568 (5)0.0481 (11)
N20.0740 (3)0.2278 (3)0.1414 (5)0.0476 (11)
H20.04270.22190.04530.057*
C10.00000.5334 (6)0.25000.060 (2)
H10.00000.59760.25000.072*
C20.0803 (4)0.4932 (3)0.1651 (7)0.0579 (15)
C30.1590 (5)0.5506 (4)0.0804 (9)0.078 (2)
H3A0.22980.53340.11220.117*
H3B0.14710.61460.10470.117*
H3C0.15130.54120.03080.117*
C40.1727 (4)0.3589 (4)0.0637 (7)0.0576 (14)
H4A0.23960.39160.07800.069*
H4B0.15370.36130.04690.069*
C50.1840 (4)0.2618 (4)0.1151 (8)0.0597 (14)
H5A0.22530.25810.21140.072*
H5B0.21930.22540.03470.072*
C60.0587 (5)0.1407 (4)0.2241 (7)0.0574 (15)
H6A0.10560.13690.31470.069*
H6B0.07320.08880.15520.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0446 (7)0.0320 (6)0.0526 (7)0.0000.0004 (3)0.000
Cl10.0883 (17)0.0572 (14)0.0526 (13)0.0000.0019 (10)0.000
O10.113 (5)0.182 (6)0.122 (6)0.012 (5)0.020 (4)0.056 (5)
O20.244 (10)0.106 (4)0.130 (6)0.077 (6)0.015 (7)0.003 (5)
N10.045 (2)0.039 (2)0.060 (3)0.0019 (17)0.004 (2)0.0077 (19)
N20.055 (3)0.038 (2)0.049 (2)0.0060 (18)0.0024 (19)0.0023 (17)
C10.069 (5)0.022 (3)0.090 (7)0.0000.026 (5)0.000
C20.058 (3)0.041 (3)0.075 (4)0.011 (3)0.031 (3)0.012 (3)
C30.078 (4)0.051 (3)0.104 (5)0.027 (3)0.026 (4)0.020 (3)
C40.048 (3)0.057 (3)0.068 (4)0.002 (2)0.006 (3)0.011 (3)
C50.053 (3)0.059 (3)0.068 (4)0.010 (2)0.002 (3)0.008 (3)
C60.070 (4)0.034 (3)0.068 (4)0.007 (3)0.002 (3)0.004 (2)
Geometric parameters (Å, º) top
Cu1—N1i1.809 (4)C1—C2i1.367 (7)
Cu1—N11.809 (4)C1—H10.9300
Cu1—N2i1.876 (4)C2—C31.477 (8)
Cu1—N21.876 (4)C3—H3A0.9600
Cl1—O1ii1.399 (8)C3—H3B0.9600
Cl1—O11.399 (8)C3—H3C0.9600
Cl1—O21.407 (8)C4—C51.479 (8)
Cl1—O2ii1.407 (8)C4—H4A0.9700
N1—C21.337 (6)C4—H4B0.9700
N1—C41.438 (7)C5—H5A0.9700
N2—C61.455 (7)C5—H5B0.9700
N2—C51.481 (7)C6—C6i1.535 (13)
N2—H20.9100C6—H6A0.9700
C1—C21.367 (7)C6—H6B0.9700
N1i—Cu1—N199.6 (3)C1—C2—C3120.7 (5)
N1i—Cu1—N2i86.43 (19)C2—C3—H3A109.5
N1—Cu1—N2i170.85 (17)C2—C3—H3B109.5
N1i—Cu1—N2170.85 (17)H3A—C3—H3B109.5
N1—Cu1—N286.43 (19)C2—C3—H3C109.5
N2i—Cu1—N288.4 (2)H3A—C3—H3C109.5
O1ii—Cl1—O1106.9 (7)H3B—C3—H3C109.5
O1ii—Cl1—O2111.4 (5)N1—C4—C5108.2 (4)
O1—Cl1—O2105.8 (5)N1—C4—H4A110.1
O1ii—Cl1—O2ii105.8 (5)C5—C4—H4A110.1
O1—Cl1—O2ii111.4 (5)N1—C4—H4B110.1
O2—Cl1—O2ii115.3 (7)C5—C4—H4B110.1
C2—N1—C4121.5 (4)H4A—C4—H4B108.4
C2—N1—Cu1124.0 (4)C4—C5—N2105.8 (4)
C4—N1—Cu1114.5 (3)C4—C5—H5A110.6
C6—N2—C5118.9 (4)N2—C5—H5A110.6
C6—N2—Cu1108.5 (3)C4—C5—H5B110.6
C5—N2—Cu1107.2 (3)N2—C5—H5B110.6
C6—N2—H2107.2H5A—C5—H5B108.7
C5—N2—H2107.2N2—C6—C6i105.3 (4)
Cu1—N2—H2107.2N2—C6—H6A110.7
C2—C1—C2i129.7 (7)C6i—C6—H6A110.7
C2—C1—H1115.1N2—C6—H6B110.7
C2i—C1—H1115.1C6i—C6—H6B110.7
N1—C2—C1121.3 (6)H6A—C6—H6B108.8
N1—C2—C3118.0 (6)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1iii0.912.813.668 (5)157
N2—H2···O1i0.912.022.917 (8)168
Symmetry codes: (i) x, y, z+1/2; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Cu(C11H21N4)]ClO4
Mr372.31
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)12.530 (5), 14.469 (6), 8.501 (4)
V3)1541.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.794, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
6834, 1349, 950
Rint0.064
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.216, 1.05
No. of reflections1349
No. of parameters98
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.912.813.668 (5)157.1
N2—H2···O1ii0.912.022.917 (8)168.4
Symmetry codes: (i) x, y, z1; (ii) x, y, z+1/2.
 

References

First citationAndrews, P. C., Atwood, J. L., Barbour, L. J., Croucher, P. D., Nichols, P. J., Smith, N. O., Skelton, B. W., White, A. H. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 2927–2932.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, D. I., Kim, E. H., Bae, Z. U., Na, H. G., Choi, J. H. & Park, Y. C. (2004). J. Inclus. Phenom. Macrocycl. Chem. 49, 107–113.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichardson, M. F. & Sievers, R. E. (1972). J. Am. Chem. Soc. 94, 4134–4139.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds