organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­phenyl-3,3′,4,4′-tetra­carboxylic acid dihydrate

aSchool of Pharmaceutical Science, Nanjing Medical University, Nanjing 210029, People's Republic of China
*Correspondence e-mail: sevencpu@163.com,

(Received 4 November 2008; accepted 26 December 2008; online 8 January 2009)

The asymmetric unit of the title compound, C16H10O8·2H2O, contains one-half of the centrosymmetric organic mol­ecule and one water mol­ecule. The dihedral angles between the carboxyl­ate groups and the adjacent phenyl ring are 71.31 (3) and 16.67 (3)°, while the carboxyl­ate groups are oriented at a dihedral angle of 72.01 (3)°. In the crystal structure, inter­molecular O—H⋯O and bifurcated O—H⋯(O,O) hydrogen bonds link the mol­ecules to form a three-dimensional supra­molecular network.

Related literature

For general background, see: Du et al. (2006[Du, M., Li, C.-P. & Zhao, X.-J. (2006). CrystEngComm, 8, 552-562.], 2007[Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011-1028.]); Desiraju (2003[Desiraju, G. R. (2003). J. Mol. Struct. 656, 5-15.]); Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Li et al. (2008[Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405-1408.]). For a related structure, see: Coles et al. (2002[Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626-o628.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O8·2H2O

  • Mr = 366.27

  • Triclinic, [P \overline 1]

  • a = 5.5858 (16) Å

  • b = 6.6618 (19) Å

  • c = 11.086 (3) Å

  • α = 93.126 (5)°

  • β = 91.404 (4)°

  • γ = 109.110 (4)°

  • V = 388.81 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 (2) K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.943, Tmax = 0.973

  • 1992 measured reflections

  • 1362 independent reflections

  • 1222 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.08

  • 1362 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.82 1.88 2.683 (3) 168
O4—H4⋯O5ii 0.82 1.79 2.599 (3) 169
O5—H5A⋯O3iii 0.85 2.45 3.129 (3) 137
O5—H5A⋯O2iv 0.85 2.22 2.892 (3) 136
O5—H5B⋯O2 0.85 1.95 2.801 (3) 175
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y+1, z; (iii) x-1, y-1, z; (iv) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic stacking, play the key role to perfectly project and regulate the detailed crystal packing of supramolecular materials (Du et al., 2006; Desiraju, 2003). Aromatic carboxylates have also been proved to be effective building blocks in constructing various architectures (Yaghi et al., 2003; Li et al., 2008; Du et al., 2007). However, the crystal structures of these polycarboxyl acids themselves are rarely reported (Coles et al., 2002). We synthesized the title compound under hydrothermal condition, and report herein its crystal structure.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule and one water molecule. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular O—H···O hydrogen bonding (Table 1) of the carboxylate O2 atom to the water molecule may cause to a small difference in the C1O2 [1.2031 (18) Å] and C8O3 [1.2156 (17) Å] double bonds of the carboxylate groups. The dihedral angles between the planar carboxylate groups (O1/C1/O2) and (O3/C8/O4) and the adjacent phenyl ring A (C2–C7) are 71.31 (3)° and 16.67 (3)°, respectively, while the carboxylate groups are oriented at a dihedral angle of 72.01 (3)°.

In the crystal structure, intra- and intermolecular O—H···O hydrogen bonds (Table 1) link the molecules to form a 3-D supramolecular network. Firstly, the O1—H1···O3 hydrogen bonds between the carboxyl units connect them into a 1-D zigzag chain (Fig. 2). Then, water molecules play the acceptor and donor roles, respectively, to participate in the formation of O4—H4···O5 and O5—H5B···O2 hydrogen bonds, giving rise to a 2-D supramolecular layer (Fig. 3). Finally, water molecules further act as donors to interconnect the supramolecular layers into 3-D networks with O5—H5A···O3 and O5—H5A···O2 hydrogen bonds (Fig. 4).

Related literature top

For general background, see: Du et al. (2006, 2007); Desiraju (2003); Yaghi et al. (2003); Li et al. (2008). For a related structure, see: Coles et al. (2002). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was recrystallized from the mixture of H2O (15 ml) and HNO3 (0.5 ml) under the hydrothermal conditions on cooling from 393 K. Colorless block shaped crystals were obtained at room temperature.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), 0.85 Å (for OH2) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title molecule with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The one dimensional hydrogen bonded chain showing hydrogen bonds between the carboxyl units. Other H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The two dimensional hydrogen-bonding layered structure along [011] direction.
[Figure 4] Fig. 4. The three dimensional hydrogen-bonded supramolecular network. The adjacent layers are shown in green and rose colors, and interlayer hydrogen bonds are shown as red dashed lines.
Biphenyl-3,3',4,4'-tetracarboxylic acid diydrate top
Crystal data top
C16H10O8·2H2OZ = 1
Mr = 366.27F(000) = 190
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5858 (16) ÅCell parameters from 1245 reflections
b = 6.6618 (19) Åθ = 3.2–27.8°
c = 11.086 (3) ŵ = 0.13 mm1
α = 93.126 (5)°T = 296 K
β = 91.404 (4)°Block, colourless
γ = 109.110 (4)°0.28 × 0.24 × 0.22 mm
V = 388.81 (19) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1362 independent reflections
Radiation source: fine-focus sealed tube1222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.943, Tmax = 0.973k = 77
1992 measured reflectionsl = 913
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.0831P]
where P = (Fo2 + 2Fc2)/3
1362 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H10O8·2H2Oγ = 109.110 (4)°
Mr = 366.27V = 388.81 (19) Å3
Triclinic, P1Z = 1
a = 5.5858 (16) ÅMo Kα radiation
b = 6.6618 (19) ŵ = 0.13 mm1
c = 11.086 (3) ÅT = 296 K
α = 93.126 (5)°0.28 × 0.24 × 0.22 mm
β = 91.404 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1222 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.973Rint = 0.008
1992 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
1362 reflectionsΔρmin = 0.16 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2031 (2)0.8456 (2)0.40618 (9)0.0535 (3)
H11.21300.85300.48030.080*
O20.7989 (2)0.6702 (2)0.43405 (9)0.0528 (3)
O30.8059 (2)1.09274 (19)0.35300 (9)0.0501 (3)
O40.5352 (2)1.08299 (18)0.20056 (9)0.0473 (3)
H40.49521.16580.24680.071*
O50.3760 (2)0.35552 (17)0.32212 (8)0.0433 (3)
H5A0.26080.29490.36950.065*
H5B0.49960.45580.35610.065*
C10.9670 (3)0.7526 (2)0.36863 (12)0.0355 (3)
C20.9236 (2)0.7450 (2)0.23342 (11)0.0327 (3)
C31.0093 (3)0.6076 (2)0.16299 (12)0.0352 (3)
H31.10620.53540.19920.042*
C40.9533 (3)0.5744 (2)0.03778 (11)0.0329 (3)
C50.8074 (3)0.6846 (3)0.01240 (12)0.0426 (4)
H50.76500.66390.09490.051*
C60.7238 (3)0.8241 (3)0.05735 (12)0.0423 (4)
H60.62720.89630.02100.051*
C70.7815 (3)0.8586 (2)0.18104 (11)0.0341 (3)
C80.7072 (3)1.0210 (2)0.25400 (12)0.0349 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (6)0.0853 (9)0.0246 (5)0.0135 (6)0.0053 (4)0.0055 (5)
O20.0502 (7)0.0738 (8)0.0232 (5)0.0062 (6)0.0020 (5)0.0023 (5)
O30.0567 (7)0.0651 (7)0.0316 (6)0.0290 (6)0.0118 (5)0.0202 (5)
O40.0621 (7)0.0599 (7)0.0298 (5)0.0363 (6)0.0068 (5)0.0100 (5)
O50.0480 (6)0.0484 (6)0.0323 (5)0.0154 (5)0.0033 (4)0.0044 (4)
C10.0423 (8)0.0418 (8)0.0231 (7)0.0164 (6)0.0016 (6)0.0054 (6)
C20.0342 (7)0.0396 (7)0.0216 (6)0.0095 (6)0.0006 (5)0.0030 (5)
C30.0408 (8)0.0430 (8)0.0240 (7)0.0175 (6)0.0019 (5)0.0016 (5)
C40.0375 (7)0.0372 (7)0.0226 (6)0.0114 (6)0.0003 (5)0.0032 (5)
C50.0589 (10)0.0540 (9)0.0202 (7)0.0276 (8)0.0063 (6)0.0065 (6)
C60.0559 (9)0.0521 (9)0.0265 (7)0.0297 (8)0.0055 (6)0.0043 (6)
C70.0373 (7)0.0390 (7)0.0244 (7)0.0113 (6)0.0004 (5)0.0036 (6)
C80.0381 (7)0.0403 (8)0.0250 (7)0.0120 (6)0.0007 (6)0.0025 (6)
Geometric parameters (Å, º) top
O1—C11.3065 (18)C2—C71.399 (2)
O1—H10.8200C3—C41.4047 (19)
O2—C11.2031 (18)C3—H30.9300
O3—C81.2156 (17)C4—C51.388 (2)
O4—C81.3052 (17)C4—C4i1.492 (3)
O4—H40.8200C5—C61.380 (2)
O5—H5A0.8500C5—H50.9300
O5—H5B0.8502C6—C71.3901 (19)
C1—C21.5080 (18)C6—H60.9300
C2—C31.380 (2)C7—C81.4874 (19)
C1—O1—H1109.5C3—C4—C4i121.05 (15)
C8—O4—H4109.5C6—C5—C4121.45 (13)
H5A—O5—H5B114.3C6—C5—H5119.3
O2—C1—O1123.81 (12)C4—C5—H5119.3
O2—C1—C2122.09 (13)C5—C6—C7121.10 (14)
O1—C1—C2114.00 (12)C5—C6—H6119.5
C3—C2—C7120.53 (12)C7—C6—H6119.5
C3—C2—C1117.84 (12)C6—C7—C2118.11 (13)
C7—C2—C1121.39 (12)C6—C7—C8120.75 (13)
C2—C3—C4121.34 (13)C2—C7—C8121.04 (12)
C2—C3—H3119.3O3—C8—O4123.78 (13)
C4—C3—H3119.3O3—C8—C7122.06 (13)
C5—C4—C3117.43 (13)O4—C8—C7114.11 (11)
C5—C4—C4i121.52 (14)
O2—C1—C2—C3104.45 (17)C5—C6—C7—C21.1 (2)
O1—C1—C2—C372.09 (17)C5—C6—C7—C8175.44 (14)
O2—C1—C2—C770.0 (2)C3—C2—C7—C61.8 (2)
O1—C1—C2—C7113.51 (16)C1—C2—C7—C6172.41 (13)
C7—C2—C3—C41.2 (2)C3—C2—C7—C8174.64 (12)
C1—C2—C3—C4173.25 (13)C1—C2—C7—C811.1 (2)
C2—C3—C4—C50.3 (2)C6—C7—C8—O3161.23 (14)
C2—C3—C4—C4i179.98 (15)C2—C7—C8—O315.2 (2)
C3—C4—C5—C61.1 (2)C6—C7—C8—O416.55 (19)
C4i—C4—C5—C6179.21 (16)C2—C7—C8—O4167.06 (13)
C4—C5—C6—C70.4 (3)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3ii0.821.882.683 (3)168
O4—H4···O5iii0.821.792.599 (3)169
O5—H5A···O3iv0.852.453.129 (3)137
O5—H5A···O2v0.852.222.892 (3)136
O5—H5B···O20.851.952.801 (3)175
Symmetry codes: (ii) x+2, y+2, z+1; (iii) x, y+1, z; (iv) x1, y1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H10O8·2H2O
Mr366.27
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.5858 (16), 6.6618 (19), 11.086 (3)
α, β, γ (°)93.126 (5), 91.404 (4), 109.110 (4)
V3)388.81 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.943, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
1992, 1362, 1222
Rint0.008
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.08
No. of reflections1362
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.821.882.683 (3)168
O4—H4···O5ii0.821.792.599 (3)169
O5—H5A···O3iii0.852.453.129 (3)137
O5—H5A···O2iv0.852.222.892 (3)136
O5—H5B···O20.851.952.801 (3)175
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z; (iii) x1, y1, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge Tianjin Normal University for their active cooperation in this work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColes, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.  Web of Science CrossRef CAS Google Scholar
First citationDu, M., Li, C.-P. & Zhao, X.-J. (2006). CrystEngComm, 8, 552–562.  Web of Science CSD CrossRef CAS Google Scholar
First citationDu, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405–1408.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds