organic compounds
Biphenyl-3,3′,4,4′-tetracarboxylic acid dihydrate
aSchool of Pharmaceutical Science, Nanjing Medical University, Nanjing 210029, People's Republic of China
*Correspondence e-mail: sevencpu@163.com,
The 16H10O8·2H2O, contains one-half of the centrosymmetric organic molecule and one water molecule. The dihedral angles between the carboxylate groups and the adjacent phenyl ring are 71.31 (3) and 16.67 (3)°, while the carboxylate groups are oriented at a dihedral angle of 72.01 (3)°. In the intermolecular O—H⋯O and bifurcated O—H⋯(O,O) hydrogen bonds link the molecules to form a three-dimensional supramolecular network.
of the title compound, CRelated literature
For general background, see: Du et al. (2006, 2007); Desiraju (2003); Yaghi et al. (2003); Li et al. (2008). For a related structure, see: Coles et al. (2002). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2001); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808044012/hk2568sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808044012/hk2568Isup2.hkl
The title compound was recrystallized from the mixture of H2O (15 ml) and HNO3 (0.5 ml) under the hydrothermal conditions on cooling from 393 K. Colorless block shaped crystals were obtained at room temperature.
H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), 0.85 Å (for OH2) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H10O8·2H2O | Z = 1 |
Mr = 366.27 | F(000) = 190 |
Triclinic, P1 | Dx = 1.564 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.5858 (16) Å | Cell parameters from 1245 reflections |
b = 6.6618 (19) Å | θ = 3.2–27.8° |
c = 11.086 (3) Å | µ = 0.13 mm−1 |
α = 93.126 (5)° | T = 296 K |
β = 91.404 (4)° | Block, colourless |
γ = 109.110 (4)° | 0.28 × 0.24 × 0.22 mm |
V = 388.81 (19) Å3 |
Bruker SMART CCD area-detector diffractometer | 1362 independent reflections |
Radiation source: fine-focus sealed tube | 1222 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.008 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −6→6 |
Tmin = 0.943, Tmax = 0.973 | k = −7→7 |
1992 measured reflections | l = −9→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.0831P] where P = (Fo2 + 2Fc2)/3 |
1362 reflections | (Δ/σ)max < 0.001 |
120 parameters | Δρmax = 0.16 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C16H10O8·2H2O | γ = 109.110 (4)° |
Mr = 366.27 | V = 388.81 (19) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.5858 (16) Å | Mo Kα radiation |
b = 6.6618 (19) Å | µ = 0.13 mm−1 |
c = 11.086 (3) Å | T = 296 K |
α = 93.126 (5)° | 0.28 × 0.24 × 0.22 mm |
β = 91.404 (4)° |
Bruker SMART CCD area-detector diffractometer | 1362 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1222 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.973 | Rint = 0.008 |
1992 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.16 e Å−3 |
1362 reflections | Δρmin = −0.16 e Å−3 |
120 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 1.2031 (2) | 0.8456 (2) | 0.40618 (9) | 0.0535 (3) | |
H1 | 1.2130 | 0.8530 | 0.4803 | 0.080* | |
O2 | 0.7989 (2) | 0.6702 (2) | 0.43405 (9) | 0.0528 (3) | |
O3 | 0.8059 (2) | 1.09274 (19) | 0.35300 (9) | 0.0501 (3) | |
O4 | 0.5352 (2) | 1.08299 (18) | 0.20056 (9) | 0.0473 (3) | |
H4 | 0.4952 | 1.1658 | 0.2468 | 0.071* | |
O5 | 0.3760 (2) | 0.35552 (17) | 0.32212 (8) | 0.0433 (3) | |
H5A | 0.2608 | 0.2949 | 0.3695 | 0.065* | |
H5B | 0.4996 | 0.4558 | 0.3561 | 0.065* | |
C1 | 0.9670 (3) | 0.7526 (2) | 0.36863 (12) | 0.0355 (3) | |
C2 | 0.9236 (2) | 0.7450 (2) | 0.23342 (11) | 0.0327 (3) | |
C3 | 1.0093 (3) | 0.6076 (2) | 0.16299 (12) | 0.0352 (3) | |
H3 | 1.1062 | 0.5354 | 0.1992 | 0.042* | |
C4 | 0.9533 (3) | 0.5744 (2) | 0.03778 (11) | 0.0329 (3) | |
C5 | 0.8074 (3) | 0.6846 (3) | −0.01240 (12) | 0.0426 (4) | |
H5 | 0.7650 | 0.6639 | −0.0949 | 0.051* | |
C6 | 0.7238 (3) | 0.8241 (3) | 0.05735 (12) | 0.0423 (4) | |
H6 | 0.6272 | 0.8963 | 0.0210 | 0.051* | |
C7 | 0.7815 (3) | 0.8586 (2) | 0.18104 (11) | 0.0341 (3) | |
C8 | 0.7072 (3) | 1.0210 (2) | 0.25400 (12) | 0.0349 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0436 (6) | 0.0853 (9) | 0.0246 (5) | 0.0135 (6) | −0.0053 (4) | −0.0055 (5) |
O2 | 0.0502 (7) | 0.0738 (8) | 0.0232 (5) | 0.0062 (6) | 0.0020 (5) | −0.0023 (5) |
O3 | 0.0567 (7) | 0.0651 (7) | 0.0316 (6) | 0.0290 (6) | −0.0118 (5) | −0.0202 (5) |
O4 | 0.0621 (7) | 0.0599 (7) | 0.0298 (5) | 0.0363 (6) | −0.0068 (5) | −0.0100 (5) |
O5 | 0.0480 (6) | 0.0484 (6) | 0.0323 (5) | 0.0154 (5) | 0.0033 (4) | −0.0044 (4) |
C1 | 0.0423 (8) | 0.0418 (8) | 0.0231 (7) | 0.0164 (6) | −0.0016 (6) | −0.0054 (6) |
C2 | 0.0342 (7) | 0.0396 (7) | 0.0216 (6) | 0.0095 (6) | −0.0006 (5) | −0.0030 (5) |
C3 | 0.0408 (8) | 0.0430 (8) | 0.0240 (7) | 0.0175 (6) | −0.0019 (5) | −0.0016 (5) |
C4 | 0.0375 (7) | 0.0372 (7) | 0.0226 (6) | 0.0114 (6) | −0.0003 (5) | −0.0032 (5) |
C5 | 0.0589 (10) | 0.0540 (9) | 0.0202 (7) | 0.0276 (8) | −0.0063 (6) | −0.0065 (6) |
C6 | 0.0559 (9) | 0.0521 (9) | 0.0265 (7) | 0.0297 (8) | −0.0055 (6) | −0.0043 (6) |
C7 | 0.0373 (7) | 0.0390 (7) | 0.0244 (7) | 0.0113 (6) | −0.0004 (5) | −0.0036 (6) |
C8 | 0.0381 (7) | 0.0403 (8) | 0.0250 (7) | 0.0120 (6) | 0.0007 (6) | −0.0025 (6) |
O1—C1 | 1.3065 (18) | C2—C7 | 1.399 (2) |
O1—H1 | 0.8200 | C3—C4 | 1.4047 (19) |
O2—C1 | 1.2031 (18) | C3—H3 | 0.9300 |
O3—C8 | 1.2156 (17) | C4—C5 | 1.388 (2) |
O4—C8 | 1.3052 (17) | C4—C4i | 1.492 (3) |
O4—H4 | 0.8200 | C5—C6 | 1.380 (2) |
O5—H5A | 0.8500 | C5—H5 | 0.9300 |
O5—H5B | 0.8502 | C6—C7 | 1.3901 (19) |
C1—C2 | 1.5080 (18) | C6—H6 | 0.9300 |
C2—C3 | 1.380 (2) | C7—C8 | 1.4874 (19) |
C1—O1—H1 | 109.5 | C3—C4—C4i | 121.05 (15) |
C8—O4—H4 | 109.5 | C6—C5—C4 | 121.45 (13) |
H5A—O5—H5B | 114.3 | C6—C5—H5 | 119.3 |
O2—C1—O1 | 123.81 (12) | C4—C5—H5 | 119.3 |
O2—C1—C2 | 122.09 (13) | C5—C6—C7 | 121.10 (14) |
O1—C1—C2 | 114.00 (12) | C5—C6—H6 | 119.5 |
C3—C2—C7 | 120.53 (12) | C7—C6—H6 | 119.5 |
C3—C2—C1 | 117.84 (12) | C6—C7—C2 | 118.11 (13) |
C7—C2—C1 | 121.39 (12) | C6—C7—C8 | 120.75 (13) |
C2—C3—C4 | 121.34 (13) | C2—C7—C8 | 121.04 (12) |
C2—C3—H3 | 119.3 | O3—C8—O4 | 123.78 (13) |
C4—C3—H3 | 119.3 | O3—C8—C7 | 122.06 (13) |
C5—C4—C3 | 117.43 (13) | O4—C8—C7 | 114.11 (11) |
C5—C4—C4i | 121.52 (14) | ||
O2—C1—C2—C3 | −104.45 (17) | C5—C6—C7—C2 | −1.1 (2) |
O1—C1—C2—C3 | 72.09 (17) | C5—C6—C7—C8 | 175.44 (14) |
O2—C1—C2—C7 | 70.0 (2) | C3—C2—C7—C6 | 1.8 (2) |
O1—C1—C2—C7 | −113.51 (16) | C1—C2—C7—C6 | −172.41 (13) |
C7—C2—C3—C4 | −1.2 (2) | C3—C2—C7—C8 | −174.64 (12) |
C1—C2—C3—C4 | 173.25 (13) | C1—C2—C7—C8 | 11.1 (2) |
C2—C3—C4—C5 | −0.3 (2) | C6—C7—C8—O3 | −161.23 (14) |
C2—C3—C4—C4i | −179.98 (15) | C2—C7—C8—O3 | 15.2 (2) |
C3—C4—C5—C6 | 1.1 (2) | C6—C7—C8—O4 | 16.55 (19) |
C4i—C4—C5—C6 | −179.21 (16) | C2—C7—C8—O4 | −167.06 (13) |
C4—C5—C6—C7 | −0.4 (3) |
Symmetry code: (i) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3ii | 0.82 | 1.88 | 2.683 (3) | 168 |
O4—H4···O5iii | 0.82 | 1.79 | 2.599 (3) | 169 |
O5—H5A···O3iv | 0.85 | 2.45 | 3.129 (3) | 137 |
O5—H5A···O2v | 0.85 | 2.22 | 2.892 (3) | 136 |
O5—H5B···O2 | 0.85 | 1.95 | 2.801 (3) | 175 |
Symmetry codes: (ii) −x+2, −y+2, −z+1; (iii) x, y+1, z; (iv) x−1, y−1, z; (v) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H10O8·2H2O |
Mr | 366.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 5.5858 (16), 6.6618 (19), 11.086 (3) |
α, β, γ (°) | 93.126 (5), 91.404 (4), 109.110 (4) |
V (Å3) | 388.81 (19) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.28 × 0.24 × 0.22 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.943, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1992, 1362, 1222 |
Rint | 0.008 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.090, 1.08 |
No. of reflections | 1362 |
No. of parameters | 120 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.16, −0.16 |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.82 | 1.88 | 2.683 (3) | 168 |
O4—H4···O5ii | 0.82 | 1.79 | 2.599 (3) | 169 |
O5—H5A···O3iii | 0.85 | 2.45 | 3.129 (3) | 137 |
O5—H5A···O2iv | 0.85 | 2.22 | 2.892 (3) | 136 |
O5—H5B···O2 | 0.85 | 1.95 | 2.801 (3) | 175 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x, y+1, z; (iii) x−1, y−1, z; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We acknowledge Tianjin Normal University for their active cooperation in this work.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Coles, S. J., Holmes, R., Hursthouse, M. B. & Price, D. J. (2002). Acta Cryst. E58, o626–o628. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. (2003). J. Mol. Struct. 656, 5–15. Web of Science CrossRef CAS Google Scholar
Du, M., Li, C.-P. & Zhao, X.-J. (2006). CrystEngComm, 8, 552–562. Web of Science CSD CrossRef CAS Google Scholar
Du, M., Li, C.-P., Zhao, X.-J. & Yu, Q. (2007). CrystEngComm, 9, 1011–1028. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Li, C.-P., Tian, Y.-L. & Guo, Y.-M. (2008). Inorg. Chem. Commun. 11, 1405–1408. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Non-covalent intermolecular interactions, mainly hydrogen bonding and aromatic stacking, play the key role to perfectly project and regulate the detailed crystal packing of supramolecular materials (Du et al., 2006; Desiraju, 2003). Aromatic carboxylates have also been proved to be effective building blocks in constructing various architectures (Yaghi et al., 2003; Li et al., 2008; Du et al., 2007). However, the crystal structures of these polycarboxyl acids themselves are rarely reported (Coles et al., 2002). We synthesized the title compound under hydrothermal condition, and report herein its crystal structure.
The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule and one water molecule. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The intramolecular O—H···O hydrogen bonding (Table 1) of the carboxylate O2 atom to the water molecule may cause to a small difference in the C1═O2 [1.2031 (18) Å] and C8═O3 [1.2156 (17) Å] double bonds of the carboxylate groups. The dihedral angles between the planar carboxylate groups (O1/C1/O2) and (O3/C8/O4) and the adjacent phenyl ring A (C2–C7) are 71.31 (3)° and 16.67 (3)°, respectively, while the carboxylate groups are oriented at a dihedral angle of 72.01 (3)°.
In the crystal structure, intra- and intermolecular O—H···O hydrogen bonds (Table 1) link the molecules to form a 3-D supramolecular network. Firstly, the O1—H1···O3 hydrogen bonds between the carboxyl units connect them into a 1-D zigzag chain (Fig. 2). Then, water molecules play the acceptor and donor roles, respectively, to participate in the formation of O4—H4···O5 and O5—H5B···O2 hydrogen bonds, giving rise to a 2-D supramolecular layer (Fig. 3). Finally, water molecules further act as donors to interconnect the supramolecular layers into 3-D networks with O5—H5A···O3 and O5—H5A···O2 hydrogen bonds (Fig. 4).