metal-organic compounds
catena-Poly[[diaquacalcium(II)]-di-μ-2-chloronicotinato]
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: handongyin@163.com
The itle compound, [Ca(C6H3ClNO2)2(H2O)2]n, contains polymeric chains extending along [100] that are generated by inversion centres. The Ca2+ ions are bridged by 2-chloronicotinate groups and exhibit an eight-coordination by six carboxylate O atoms of four different 2-chloronicotinate ligands and two O atoms of water molecules. In the intermolecular O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds result in the formation of a supramolecular network structure. The π–π contacts between the 2-chloronicotinate rings [centroid–centroid distances = 3.875 (3) and 3.701 (3) Å] may further stabilize the structure.
Related literature
For general background, see: Schmidbaur et al. (1989, 1990). For related structures, see: Murugavel & Banerjee (2003); Radanovic et al. (2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536808044267/hk2578sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808044267/hk2578Isup2.hkl
For the preparation of the title compound, CaCl2(H2O)2 (0.588 g, 4 mmol) and 2-chloronicotinic acid (0.044 g, 0.4 mmol) were dissolved in H2O (20 ml) and MeOH (30 ml) by refluxing for 30 min. Sodium methoxide (0.4 mmol, 0.8 ml) was added dropwise by stirring. After refluxing for 8 h, the colorless solution was obtained, and then filtered. The solvent was gradually removed by evaporation under vacuum until the colorless solid was obtained, which was recrystallized from petroleum ether–dichoromethane (1:1) to give the block-shaped colorless crystals.
H atoms were positioned geometrically, with O—H = 0.85 Å (for H2O) and C—H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Ca(C6H3ClNO2)2(H2O)2] | Z = 2 |
Mr = 389.20 | F(000) = 396 |
Triclinic, P1 | Dx = 1.442 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8363 (10) Å | Cell parameters from 2126 reflections |
b = 10.8421 (16) Å | θ = 2.5–27.6° |
c = 10.8834 (16) Å | µ = 0.68 mm−1 |
α = 98.455 (2)° | T = 298 K |
β = 97.610 (1)° | Block, colourless |
γ = 97.289 (1)° | 0.48 × 0.40 × 0.30 mm |
V = 896.4 (2) Å3 |
Bruker SMART CCD area-detector diffractometer | 3074 independent reflections |
Radiation source: fine-focus sealed tube | 2306 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→9 |
Tmin = 0.738, Tmax = 0.823 | k = −11→12 |
4594 measured reflections | l = −11→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.072P)2 + 0.8771P] where P = (Fo2 + 2Fc2)/3 |
3074 reflections | (Δ/σ)max = 0.001 |
208 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Ca(C6H3ClNO2)2(H2O)2] | γ = 97.289 (1)° |
Mr = 389.20 | V = 896.4 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.8363 (10) Å | Mo Kα radiation |
b = 10.8421 (16) Å | µ = 0.68 mm−1 |
c = 10.8834 (16) Å | T = 298 K |
α = 98.455 (2)° | 0.48 × 0.40 × 0.30 mm |
β = 97.610 (1)° |
Bruker SMART CCD area-detector diffractometer | 3074 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2306 reflections with I > 2σ(I) |
Tmin = 0.738, Tmax = 0.823 | Rint = 0.022 |
4594 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.47 e Å−3 |
3074 reflections | Δρmin = −0.45 e Å−3 |
208 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ca1 | 0.75350 (8) | −0.02117 (7) | 0.54151 (6) | 0.0273 (2) | |
Cl1 | 1.31442 (17) | −0.08155 (14) | 0.89399 (12) | 0.0688 (4) | |
Cl2 | 0.85580 (16) | 0.45842 (12) | 0.62037 (12) | 0.0642 (4) | |
N1 | 1.2104 (5) | 0.0770 (5) | 1.0606 (3) | 0.0597 (11) | |
N2 | 0.7024 (5) | 0.5552 (3) | 0.4414 (4) | 0.0521 (9) | |
O1 | 1.0474 (3) | 0.0510 (2) | 0.6352 (2) | 0.0363 (6) | |
O2 | 1.3309 (3) | 0.1026 (3) | 0.6846 (2) | 0.0468 (7) | |
O3 | 0.8087 (3) | 0.1815 (3) | 0.4807 (3) | 0.0501 (8) | |
O4 | 0.5271 (3) | 0.1368 (3) | 0.4706 (3) | 0.0447 (7) | |
O5 | 0.8604 (3) | −0.2084 (2) | 0.5835 (2) | 0.0395 (6) | |
H5B | 0.9605 | −0.2092 | 0.5617 | 0.047* | |
H5C | 0.7926 | −0.2722 | 0.5410 | 0.047* | |
O6 | 0.6803 (4) | 0.0628 (3) | 0.7404 (3) | 0.0539 (8) | |
H6B | 0.7060 | 0.0164 | 0.7946 | 0.065* | |
H6C | 0.5721 | 0.0672 | 0.7340 | 0.065* | |
C1 | 1.1815 (5) | 0.0877 (4) | 0.7134 (3) | 0.0336 (8) | |
C2 | 1.2213 (5) | 0.0517 (4) | 0.9394 (4) | 0.0447 (10) | |
C3 | 1.1612 (5) | 0.1197 (4) | 0.8500 (3) | 0.0392 (9) | |
C4 | 1.0797 (6) | 0.2201 (5) | 0.8907 (4) | 0.0574 (12) | |
H4 | 1.0330 | 0.2677 | 0.8339 | 0.069* | |
C5 | 1.0684 (7) | 0.2488 (6) | 1.0167 (5) | 0.0694 (15) | |
H5 | 1.0168 | 0.3176 | 1.0462 | 0.083* | |
C6 | 1.1333 (6) | 0.1758 (6) | 1.0973 (4) | 0.0644 (14) | |
H6 | 1.1235 | 0.1957 | 1.1819 | 0.077* | |
C7 | 0.6592 (5) | 0.2077 (3) | 0.4592 (4) | 0.0335 (8) | |
C8 | 0.7209 (5) | 0.4468 (4) | 0.4786 (4) | 0.0404 (9) | |
C9 | 0.6374 (4) | 0.3299 (3) | 0.4140 (4) | 0.0334 (8) | |
C10 | 0.5307 (5) | 0.3306 (4) | 0.3029 (4) | 0.0491 (11) | |
H10 | 0.4696 | 0.2553 | 0.2566 | 0.059* | |
C11 | 0.5145 (6) | 0.4422 (5) | 0.2605 (5) | 0.0595 (13) | |
H11 | 0.4454 | 0.4430 | 0.1844 | 0.071* | |
C12 | 0.6014 (6) | 0.5528 (5) | 0.3319 (5) | 0.0598 (13) | |
H12 | 0.5896 | 0.6283 | 0.3031 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0220 (4) | 0.0305 (4) | 0.0307 (4) | 0.0046 (3) | 0.0048 (3) | 0.0083 (3) |
Cl1 | 0.0708 (8) | 0.0885 (10) | 0.0633 (8) | 0.0386 (7) | 0.0216 (6) | 0.0320 (7) |
Cl2 | 0.0589 (7) | 0.0549 (7) | 0.0694 (8) | 0.0096 (6) | −0.0128 (6) | −0.0008 (6) |
N1 | 0.040 (2) | 0.105 (3) | 0.033 (2) | 0.008 (2) | 0.0044 (16) | 0.013 (2) |
N2 | 0.042 (2) | 0.0327 (19) | 0.083 (3) | 0.0083 (16) | 0.0124 (19) | 0.0121 (18) |
O1 | 0.0253 (13) | 0.0476 (16) | 0.0334 (14) | 0.0041 (11) | 0.0003 (11) | 0.0036 (12) |
O2 | 0.0246 (14) | 0.077 (2) | 0.0374 (15) | 0.0034 (13) | 0.0070 (11) | 0.0061 (14) |
O3 | 0.0299 (15) | 0.0408 (16) | 0.088 (2) | 0.0111 (12) | 0.0138 (14) | 0.0274 (15) |
O4 | 0.0327 (15) | 0.0402 (15) | 0.0632 (19) | −0.0010 (12) | 0.0142 (13) | 0.0149 (13) |
O5 | 0.0300 (14) | 0.0340 (14) | 0.0570 (17) | 0.0060 (11) | 0.0099 (12) | 0.0119 (12) |
O6 | 0.0371 (16) | 0.089 (2) | 0.0397 (16) | 0.0195 (15) | 0.0091 (13) | 0.0113 (15) |
C1 | 0.031 (2) | 0.041 (2) | 0.0295 (19) | 0.0066 (16) | 0.0028 (16) | 0.0084 (16) |
C2 | 0.031 (2) | 0.070 (3) | 0.034 (2) | 0.0077 (19) | 0.0065 (16) | 0.009 (2) |
C3 | 0.0250 (19) | 0.057 (3) | 0.033 (2) | 0.0035 (17) | 0.0048 (16) | 0.0027 (18) |
C4 | 0.060 (3) | 0.068 (3) | 0.045 (3) | 0.017 (2) | 0.011 (2) | 0.005 (2) |
C5 | 0.064 (3) | 0.088 (4) | 0.053 (3) | 0.019 (3) | 0.018 (3) | −0.012 (3) |
C6 | 0.048 (3) | 0.104 (4) | 0.036 (3) | 0.004 (3) | 0.012 (2) | −0.005 (3) |
C7 | 0.0277 (19) | 0.0288 (19) | 0.045 (2) | 0.0062 (15) | 0.0093 (16) | 0.0057 (16) |
C8 | 0.030 (2) | 0.034 (2) | 0.059 (3) | 0.0058 (16) | 0.0092 (18) | 0.0109 (18) |
C9 | 0.0230 (18) | 0.033 (2) | 0.047 (2) | 0.0064 (15) | 0.0110 (16) | 0.0109 (17) |
C10 | 0.043 (2) | 0.044 (2) | 0.060 (3) | 0.0105 (19) | 0.001 (2) | 0.009 (2) |
C11 | 0.067 (3) | 0.057 (3) | 0.056 (3) | 0.019 (2) | −0.005 (2) | 0.020 (2) |
C12 | 0.056 (3) | 0.048 (3) | 0.082 (4) | 0.014 (2) | 0.010 (3) | 0.029 (3) |
Ca1—O4i | 2.366 (3) | O4—C7 | 1.241 (4) |
Ca1—O5 | 2.373 (3) | O4—Ca1i | 2.366 (3) |
Ca1—O1 | 2.375 (2) | O5—H5B | 0.8499 |
Ca1—O3 | 2.391 (3) | O5—H5C | 0.8500 |
Ca1—O6 | 2.393 (3) | O6—H6B | 0.8501 |
Ca1—O2ii | 2.461 (3) | O6—H6C | 0.8500 |
Ca1—O1ii | 2.641 (3) | C1—C3 | 1.511 (5) |
Ca1—O4 | 2.734 (3) | C1—Ca1ii | 2.890 (4) |
Ca1—C1ii | 2.890 (4) | C2—C3 | 1.375 (6) |
Ca1—Ca1i | 4.0553 (14) | C3—C4 | 1.377 (6) |
Ca1—Ca1ii | 4.0681 (14) | C4—C5 | 1.378 (6) |
Ca1—H5B | 2.7769 | C4—H4 | 0.9300 |
Ca1—H5C | 2.7764 | C5—C6 | 1.357 (8) |
Cl1—C2 | 1.737 (5) | C5—H5 | 0.9300 |
Cl2—C8 | 1.729 (4) | C6—H6 | 0.9300 |
N1—C2 | 1.323 (5) | C7—C9 | 1.501 (5) |
N1—C6 | 1.332 (7) | C8—C9 | 1.391 (5) |
N2—C8 | 1.317 (5) | C9—C10 | 1.378 (5) |
N2—C12 | 1.336 (6) | C10—C11 | 1.372 (6) |
O1—C1 | 1.242 (4) | C10—H10 | 0.9300 |
O1—Ca1ii | 2.641 (3) | C11—C12 | 1.372 (7) |
O2—C1 | 1.248 (4) | C11—H11 | 0.9300 |
O2—Ca1ii | 2.461 (3) | C12—H12 | 0.9300 |
O3—C7 | 1.241 (4) | ||
O4i—Ca1—O5 | 85.90 (9) | O5—Ca1—H5C | 16.8 |
O4i—Ca1—O1 | 154.07 (10) | O1—Ca1—H5C | 92.6 |
O5—Ca1—O1 | 76.49 (9) | O3—Ca1—H5C | 155.0 |
O4i—Ca1—O3 | 124.46 (9) | O6—Ca1—H5C | 108.6 |
O5—Ca1—O3 | 148.15 (9) | O2ii—Ca1—H5C | 80.4 |
O1—Ca1—O3 | 77.33 (9) | O1ii—Ca1—H5C | 80.4 |
O4i—Ca1—O6 | 79.48 (10) | O4—Ca1—H5C | 144.2 |
O5—Ca1—O6 | 102.23 (10) | C1ii—Ca1—H5C | 80.4 |
O1—Ca1—O6 | 85.76 (9) | Ca1i—Ca1—H5C | 111.8 |
O3—Ca1—O6 | 93.57 (11) | Ca1ii—Ca1—H5C | 85.3 |
O4i—Ca1—O2ii | 76.74 (9) | H5B—Ca1—H5C | 28.7 |
O5—Ca1—O2ii | 93.19 (10) | C2—N1—C6 | 116.7 (4) |
O1—Ca1—O2ii | 122.53 (9) | C8—N2—C12 | 117.9 (4) |
O3—Ca1—O2ii | 85.84 (11) | C1—O1—Ca1 | 162.8 (2) |
O6—Ca1—O2ii | 150.55 (10) | C1—O1—Ca1ii | 88.6 (2) |
O4i—Ca1—O1ii | 124.14 (9) | Ca1—O1—Ca1ii | 108.26 (9) |
O5—Ca1—O1ii | 80.03 (9) | C1—O2—Ca1ii | 96.9 (2) |
O1—Ca1—O1ii | 71.74 (9) | C7—O3—Ca1 | 101.6 (2) |
O3—Ca1—O1ii | 74.78 (9) | C7—O4—Ca1i | 168.0 (3) |
O6—Ca1—O1ii | 156.33 (9) | C7—O4—Ca1 | 85.3 (2) |
O2ii—Ca1—O1ii | 50.80 (8) | Ca1i—O4—Ca1 | 105.13 (10) |
O4i—Ca1—O4 | 74.87 (10) | Ca1—O5—H5B | 109.6 |
O5—Ca1—O4 | 160.24 (9) | Ca1—O5—H5C | 109.6 |
O1—Ca1—O4 | 123.16 (9) | H5B—O5—H5C | 108.3 |
O3—Ca1—O4 | 49.89 (8) | Ca1—O6—H6B | 110.5 |
O6—Ca1—O4 | 79.04 (9) | Ca1—O6—H6C | 110.5 |
O2ii—Ca1—O4 | 78.19 (10) | H6B—O6—H6C | 108.8 |
O1ii—Ca1—O4 | 106.86 (8) | O1—C1—O2 | 123.5 (3) |
O4i—Ca1—C1ii | 100.91 (10) | O1—C1—C3 | 117.9 (3) |
O5—Ca1—C1ii | 87.26 (10) | O2—C1—C3 | 118.5 (3) |
O1—Ca1—C1ii | 97.14 (10) | O1—C1—Ca1ii | 65.98 (19) |
O3—Ca1—C1ii | 78.32 (11) | O2—C1—Ca1ii | 57.69 (19) |
O6—Ca1—C1ii | 170.49 (11) | C3—C1—Ca1ii | 175.5 (3) |
O2ii—Ca1—C1ii | 25.39 (9) | N1—C2—C3 | 125.2 (4) |
O1ii—Ca1—C1ii | 25.45 (9) | N1—C2—Cl1 | 115.4 (3) |
O4—Ca1—C1ii | 91.86 (9) | C3—C2—Cl1 | 119.4 (3) |
O4i—Ca1—Ca1i | 40.60 (7) | C2—C3—C4 | 116.7 (4) |
O5—Ca1—Ca1i | 126.35 (7) | C2—C3—C1 | 122.6 (4) |
O1—Ca1—Ca1i | 153.30 (7) | C4—C3—C1 | 120.7 (4) |
O3—Ca1—Ca1i | 84.02 (7) | C3—C4—C5 | 119.0 (5) |
O6—Ca1—Ca1i | 76.43 (7) | C3—C4—H4 | 120.5 |
O2ii—Ca1—Ca1i | 74.23 (6) | C5—C4—H4 | 120.5 |
O1ii—Ca1—Ca1i | 121.53 (6) | C6—C5—C4 | 119.5 (5) |
O4—Ca1—Ca1i | 34.28 (5) | C6—C5—H5 | 120.3 |
C1ii—Ca1—Ca1i | 97.60 (7) | C4—C5—H5 | 120.3 |
O4i—Ca1—Ca1ii | 152.81 (8) | N1—C6—C5 | 122.9 (4) |
O5—Ca1—Ca1ii | 75.59 (6) | N1—C6—H6 | 118.5 |
O1—Ca1—Ca1ii | 38.06 (6) | C5—C6—H6 | 118.5 |
O3—Ca1—Ca1ii | 72.63 (7) | O3—C7—O4 | 123.2 (3) |
O6—Ca1—Ca1ii | 123.46 (8) | O3—C7—C9 | 118.2 (3) |
O2ii—Ca1—Ca1ii | 84.47 (6) | O4—C7—C9 | 118.6 (3) |
O1ii—Ca1—Ca1ii | 33.68 (5) | N2—C8—C9 | 124.5 (4) |
O4—Ca1—Ca1ii | 120.51 (6) | N2—C8—Cl2 | 114.9 (3) |
C1ii—Ca1—Ca1ii | 59.09 (7) | C9—C8—Cl2 | 120.6 (3) |
Ca1i—Ca1—Ca1ii | 149.45 (4) | C10—C9—C8 | 116.3 (3) |
O4i—Ca1—H5B | 101.0 | C10—C9—C7 | 120.2 (3) |
O5—Ca1—H5B | 16.8 | C8—C9—C7 | 123.5 (3) |
O1—Ca1—H5B | 64.9 | C11—C10—C9 | 120.0 (4) |
O3—Ca1—H5B | 131.5 | C11—C10—H10 | 120.0 |
O6—Ca1—H5B | 111.9 | C9—C10—H10 | 120.0 |
O2ii—Ca1—H5B | 89.7 | C10—C11—C12 | 119.2 (4) |
O1ii—Ca1—H5B | 65.5 | C10—C11—H11 | 120.4 |
O4—Ca1—H5B | 167.8 | C12—C11—H11 | 120.4 |
C1ii—Ca1—H5B | 77.5 | N2—C12—C11 | 122.0 (4) |
Ca1i—Ca1—H5B | 140.4 | N2—C12—H12 | 119.0 |
Ca1ii—Ca1—H5B | 58.9 | C11—C12—H12 | 119.0 |
O4i—Ca1—H5C | 72.5 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···O3ii | 0.85 | 1.92 | 2.765 (3) | 171 |
O5—H5C···N2iii | 0.85 | 2.01 | 2.831 (3) | 162 |
O6—H6B···N1iv | 0.85 | 2.07 | 2.919 (4) | 173 |
O6—H6C···O2v | 0.85 | 2.00 | 2.826 (3) | 165 |
C6—H6···O5iv | 0.93 | 2.52 | 3.432 (4) | 166 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x, y−1, z; (iv) −x+2, −y, −z+2; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Ca(C6H3ClNO2)2(H2O)2] |
Mr | 389.20 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 298 |
a, b, c (Å) | 7.8363 (10), 10.8421 (16), 10.8834 (16) |
α, β, γ (°) | 98.455 (2), 97.610 (1), 97.289 (1) |
V (Å3) | 896.4 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.68 |
Crystal size (mm) | 0.48 × 0.40 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.738, 0.823 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4594, 3074, 2306 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.145, 1.03 |
No. of reflections | 3074 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.45 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).
Ca1—O4i | 2.366 (3) | Ca1—O2ii | 2.461 (3) |
Ca1—O5 | 2.373 (3) | Ca1—O1ii | 2.641 (3) |
Ca1—O1 | 2.375 (2) | Ca1—O4 | 2.734 (3) |
Ca1—O3 | 2.391 (3) | Ca1—Ca1i | 4.0553 (14) |
Ca1—O6 | 2.393 (3) | Ca1—Ca1ii | 4.0681 (14) |
O4i—Ca1—O5 | 85.90 (9) | O4i—Ca1—O1ii | 124.14 (9) |
O4i—Ca1—O1 | 154.07 (10) | O5—Ca1—O1ii | 80.03 (9) |
O5—Ca1—O1 | 76.49 (9) | O1—Ca1—O1ii | 71.74 (9) |
O4i—Ca1—O3 | 124.46 (9) | O3—Ca1—O1ii | 74.78 (9) |
O5—Ca1—O3 | 148.15 (9) | O6—Ca1—O1ii | 156.33 (9) |
O1—Ca1—O3 | 77.33 (9) | O2ii—Ca1—O1ii | 50.80 (8) |
O4i—Ca1—O6 | 79.48 (10) | O4i—Ca1—O4 | 74.87 (10) |
O5—Ca1—O6 | 102.23 (10) | O5—Ca1—O4 | 160.24 (9) |
O1—Ca1—O6 | 85.76 (9) | O1—Ca1—O4 | 123.16 (9) |
O4i—Ca1—O2ii | 76.74 (9) | O3—Ca1—O4 | 49.89 (8) |
O5—Ca1—O2ii | 93.19 (10) | O6—Ca1—O4 | 79.04 (9) |
O1—Ca1—O2ii | 122.53 (9) | O2ii—Ca1—O4 | 78.19 (10) |
O3—Ca1—O2ii | 85.84 (11) | O1ii—Ca1—O4 | 106.86 (8) |
O6—Ca1—O2ii | 150.55 (10) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5B···O3ii | 0.85 | 1.92 | 2.765 (3) | 171.00 |
O5—H5C···N2iii | 0.85 | 2.01 | 2.831 (3) | 162.00 |
O6—H6B···N1iv | 0.85 | 2.07 | 2.919 (4) | 173.00 |
O6—H6C···O2v | 0.85 | 2.00 | 2.826 (3) | 165.00 |
C6—H6···O5iv | 0.93 | 2.52 | 3.432 (4) | 166.00 |
Symmetry codes: (ii) −x+2, −y, −z+1; (iii) x, y−1, z; (iv) −x+2, −y, −z+2; (v) x−1, y, z. |
Acknowledgements
The authors acknowledge the National Natural Science Foundation of China (grant Nos. 20771053 and 20773059).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Murugavel, R. & Banerjee, S. (2003). Inorg. Chem. Commun. 6, 810–814. Web of Science CSD CrossRef CAS Google Scholar
Radanovic, D. D., Rychlewska, U., Djuran, M. I., Warzajtis, B., Draskovic, N. S. & Gures, D. M. (2004). Polyhedron, 23, 2183–2192. Web of Science CSD CrossRef CAS Google Scholar
Schmidbaur, H., Bach, I., Wilkinson, D. L. & Muller, G. (1989). Chem. Ber. 122, 1439–1444. CrossRef CAS Web of Science Google Scholar
Schmidbaur, H., Classen, H. G. & Helbig, J. (1990). Angew. Chem. Int. Ed. Engl. 29, 1090–1103. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chemistry of alkaline earth metals is an unexplored area. The model complexes containing Mg2+ and Ca2+ cations have previously been prepared and used as probes for understanding the binding modes of these metals (Schmidbaur et al., 1989, 1990). In our ongoing studies with 2-chloronicotinate ligand and s-block metal ions, the title compound has been synthesized, and we report herein its crystal structure.
In the molecule of the title compound, (I), (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. It has an inversion centre midway between the two CaII ions, which are bridged by 2-chloronicotinate groups. Each Ca atom is eight-coordinated by six O atoms of 2-chloronicotinate ligands and two O atoms of water molecules. It essentially forms a one-dimensional chain structure (Fig. 2). The Ca—O bonds are in the range of [2.366 (3)–2.734 (3) Å] (Table 1). The average value of the Ca—O bonds [2.467 (3) Å] is almost the same with the corresponding values [2.4674 (9) Å] in [Ca(3-aba)2(H2O)2]n (where 3-aba is 3-aminobenzoic acid), (II) (Murugavel & Banerjee, 2003) and [2.4556 (8) Å] in [Ca(H2O)3Ca(1,3-pdta)- (H2O)]. 2(H2O) (where 1,3-pdta is the 1,3-propanediaminetetraacetate ion), (III) (Radanovic et al., 2004). The Ca1—Ca1i [4.0553 (14) Å] and Ca1—Ca1ii [4.0681 (14) Å] [symmetry codes: (i) 1 - x, -y, 1 - z, (ii) 2 - x, -y, 1 - z] distances are longer than the corresponding value [4.0034 (5) Å] in (II).
In the crystal structure, intermolecular O—H···O, O—H···N and C—H···O hydrogen bonds (Table 2) result in the formation of a supramolecular network structure. The π–π contacts between the 2-chloronicotinate rings, Cg1–Cg1i and Cg2–Cg2ii [symmetry codes: (i) -x, 2 - y, -z; (ii) 1 - x, 1 - y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (N1/C2–C6) and B (N2/C8–C12), respectively] may further stabilize the structure, with centroid–centroid distances of 3.875 (3) Å and 3.701 (3) Å.