organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(2-pyridylmethyl­ene­amino­meth­yl)benzene

aKey Laboratory of Fine Petro-Chemical technology, Jiangsu Polytechnic University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: chenqunjpu@yahoo.com

(Received 1 December 2008; accepted 7 January 2009; online 10 January 2009)

The asymmetric unit of the centrosymmetric title compound, C20H18N4, contains one half-mol­ecule. The pyridine and benzene rings are oriented at a dihedral angle of 77.21 (7)°.

Related literature

For general background, see: Barboiu et al. (2006[Barboiu, M., Petit, E., van der Lee, A. & Vaughan, G. (2006). Inorg. Chem. 45, 484-486.]); Keegan et al. (2002[Keegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329-332.]); Yue et al. (2004[Yue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549-555.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H18N4

  • Mr = 314.38

  • Triclinic, [P \overline 1]

  • a = 4.527 (3) Å

  • b = 10.117 (6) Å

  • c = 10.456 (6) Å

  • α = 61.086 (7)°

  • β = 88.543 (8)°

  • γ = 82.242 (8)°

  • V = 414.9 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 (2) K

  • 0.32 × 0.30 × 0.23 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.990

  • 2909 measured reflections

  • 1449 independent reflections

  • 1250 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.01

  • 1449 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bipyridyl-type bidentate Schiff base ligands have been utilized intensively to assemble various coordination polymers with interesting topologies and fascinating structural diversities (Barboiu et al., 2006; Keegan et al., 2002; Yue et al., 2004). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule, where the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C5) and B (C8-C10/C8A-C10A) are, of course, planar, and they are oriented at a dihedral angle of 77.21 (7)° [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Related literature top

For general background, see: Barboiu et al. (2006); Keegan et al. (2002); Yue et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared from the condensation reaction between pyridine-2-carboxaldehyde (100 mmol) and 1,4-benzenedimethanamine (50 mmol) in tetrahydrofuran (yield; 83%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 1 - x, 1 - y, 1 - z].
1,4-Bis(2-pyridylmethyleneaminomethyl)benzene top
Crystal data top
C20H18N4Z = 1
Mr = 314.38F(000) = 166
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.527 (3) ÅCell parameters from 1582 reflections
b = 10.117 (6) Åθ = 2.2–27.0°
c = 10.456 (6) ŵ = 0.08 mm1
α = 61.086 (7)°T = 296 K
β = 88.543 (8)°Block, colorless
γ = 82.242 (8)°0.32 × 0.30 × 0.23 mm
V = 414.9 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1449 independent reflections
Radiation source: fine-focus sealed tube1250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 55
Tmin = 0.976, Tmax = 0.990k = 1212
2909 measured reflectionsl = 1211
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0501P]
where P = (Fo2 + 2Fc2)/3
1449 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C20H18N4γ = 82.242 (8)°
Mr = 314.38V = 414.9 (4) Å3
Triclinic, P1Z = 1
a = 4.527 (3) ÅMo Kα radiation
b = 10.117 (6) ŵ = 0.08 mm1
c = 10.456 (6) ÅT = 296 K
α = 61.086 (7)°0.32 × 0.30 × 0.23 mm
β = 88.543 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1449 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1250 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.990Rint = 0.021
2909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.01Δρmax = 0.14 e Å3
1449 reflectionsΔρmin = 0.18 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8015 (3)0.26368 (14)1.18773 (13)0.0628 (3)
N20.4321 (2)0.26607 (12)0.89307 (11)0.0516 (3)
C10.7265 (3)0.20335 (14)1.10637 (13)0.0477 (3)
C20.8567 (3)0.06149 (15)1.12895 (14)0.0536 (3)
H20.79480.02151.07220.064*
C31.0786 (3)0.01952 (17)1.23630 (16)0.0622 (4)
H31.17270.11401.25190.075*
C41.1584 (4)0.04142 (19)1.31980 (16)0.0673 (4)
H41.30710.01101.39370.081*
C51.0143 (4)0.18146 (19)1.29230 (17)0.0714 (5)
H51.06870.22151.35030.086*
C60.4970 (3)0.29926 (14)0.98916 (14)0.0497 (3)
H60.39680.38730.98620.060*
C70.2103 (3)0.37330 (16)0.77804 (14)0.0560 (4)
H7A0.12810.45430.79860.067*
H7B0.04840.32100.77480.067*
C80.3559 (3)0.43975 (14)0.63283 (13)0.0470 (3)
C90.3629 (3)0.37288 (15)0.54431 (14)0.0541 (3)
H90.27050.28660.57330.065*
C100.4953 (3)0.56793 (15)0.58621 (14)0.0544 (4)
H100.49350.61500.64380.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0703 (8)0.0659 (7)0.0620 (7)0.0068 (6)0.0016 (6)0.0391 (6)
N20.0562 (7)0.0502 (6)0.0452 (6)0.0045 (5)0.0029 (5)0.0215 (5)
C10.0499 (7)0.0519 (7)0.0441 (7)0.0121 (6)0.0107 (5)0.0246 (6)
C20.0571 (8)0.0527 (7)0.0524 (7)0.0080 (6)0.0060 (6)0.0268 (6)
C30.0614 (9)0.0552 (8)0.0598 (8)0.0025 (6)0.0032 (7)0.0214 (7)
C40.0614 (9)0.0776 (10)0.0520 (8)0.0078 (8)0.0027 (7)0.0231 (8)
C50.0784 (11)0.0846 (11)0.0626 (9)0.0120 (9)0.0046 (8)0.0441 (9)
C60.0521 (7)0.0461 (7)0.0512 (7)0.0057 (5)0.0079 (6)0.0245 (6)
C70.0507 (8)0.0607 (8)0.0542 (8)0.0029 (6)0.0009 (6)0.0271 (7)
C80.0393 (6)0.0488 (7)0.0470 (7)0.0033 (5)0.0071 (5)0.0206 (6)
C90.0563 (8)0.0498 (7)0.0571 (8)0.0099 (6)0.0004 (6)0.0258 (6)
C100.0593 (8)0.0566 (8)0.0539 (8)0.0048 (6)0.0020 (6)0.0326 (6)
Geometric parameters (Å, º) top
N1—C11.3358 (17)C6—C11.472 (2)
N1—C51.332 (2)C6—H60.9300
N2—C61.2555 (17)C7—H7A0.9700
N2—C71.4620 (18)C7—H7B0.9700
C1—C21.383 (2)C8—C71.5078 (19)
C2—C31.373 (2)C8—C91.3832 (19)
C2—H20.9300C8—C101.383 (2)
C3—C41.367 (2)C9—C10i1.379 (2)
C3—H30.9300C9—H90.9300
C4—C51.372 (2)C10—C9i1.379 (2)
C4—H40.9300C10—H100.9300
C5—H50.9300
C5—N1—C1116.79 (13)N2—C6—H6118.9
C6—N2—C7117.39 (12)C1—C6—H6118.9
N1—C1—C2122.69 (13)N2—C7—C8109.34 (11)
N1—C1—C6115.30 (12)N2—C7—H7A109.8
C2—C1—C6122.01 (12)C8—C7—H7A109.8
C3—C2—C1119.09 (13)N2—C7—H7B109.8
C3—C2—H2120.5C8—C7—H7B109.8
C1—C2—H2120.5H7A—C7—H7B108.3
C4—C3—C2118.73 (14)C9—C8—C7121.61 (12)
C4—C3—H3120.6C10—C8—C7120.48 (11)
C2—C3—H3120.6C10i—C9—C8121.07 (13)
C3—C4—C5118.57 (14)C10—C8—C9117.88 (12)
C3—C4—H4120.7C10i—C9—H9119.5
C5—C4—H4120.7C8—C9—H9119.5
N1—C5—C4124.10 (14)C9i—C10—C8121.05 (12)
N1—C5—H5117.9C9i—C10—H10119.5
C4—C5—H5117.9C8—C10—H10119.5
N2—C6—C1122.13 (12)
C5—N1—C1—C21.0 (2)C3—C4—C5—N10.7 (2)
C5—N1—C1—C6178.28 (12)N2—C6—C1—N1170.79 (11)
C1—N1—C5—C40.3 (2)N2—C6—C1—C28.52 (19)
C7—N2—C6—C1177.26 (11)C9—C8—C7—N290.82 (14)
C6—N2—C7—C8115.21 (13)C10—C8—C7—N287.19 (15)
N1—C1—C2—C32.0 (2)C7—C8—C9—C10i178.00 (12)
C6—C1—C2—C3177.27 (11)C10—C8—C9—C10i0.1 (2)
C1—C2—C3—C41.6 (2)C7—C8—C10—C9i178.03 (12)
C2—C3—C4—C50.3 (2)C9—C8—C10—C9i0.1 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H18N4
Mr314.38
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)4.527 (3), 10.117 (6), 10.456 (6)
α, β, γ (°)61.086 (7), 88.543 (8), 82.242 (8)
V3)414.9 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.30 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.976, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2909, 1449, 1250
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.01
No. of reflections1449
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarboiu, M., Petit, E., van der Lee, A. & Vaughan, G. (2006). Inorg. Chem. 45, 484–486.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKeegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des. 2, 329–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549–555.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds