metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(1-methyl-1H-imidazole-κN3)cobalt(II) dibromide dihydrate

aDepartment of Chemistry, Hefei Teachers College, Hefei, Anhui 230061, People's Republic of China
*Correspondence e-mail: rufuyao@sian.com

(Received 4 December 2008; accepted 16 December 2008; online 8 January 2009)

The asymmetric unit of the title compound, [Co(C4H6N2)6]Br2·2H2O, contains one-half of the centrosymmetric cation, one Br atom and one water mol­ecule. The CoII atom, lying on an inversion center, has a distorted octa­hedral geometry, defined by six N atoms from six 1-methyl­imidazole ligands. In the crystal structure, intra- and inter­molecular O—H⋯Br hydrogen bonds link pairs of uncoordinated water mol­ecules and bromide anions.

Related literature

For general background, see: Lin et al. (2007[Lin, Z. J., Wragg, D. S., Warren, J. E. & Morris, R. E. (2007). J. Am. Chem. Soc. 129, 10334-10335.]); Rogers & Seddon (2003[Rogers, R. D. & Seddon, K. R. (2003). Science, 302, 792-793.]); Xie et al. (2008[Xie, Z. L., Feng, M. L., Li, J. R. & Huang, X. Y. (2008). Inorg. Chem. Commun. 11, 1143-1146.]). For a related structure, see: Baca et al. (2005[Baca, S. G., Filippova, I. G., Franz, C, P., Ambrus, C., Gdaniec, M., Stoeckli-Evans, H., Simonov, Y. A., Gherco, O. A., Bejan, T., Gerbeleu, N. & Decurtins, S. (2005). Inorg. Chim. Acta, 358, 1762-1770.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H6N2)6]Br2·2H2O

  • Mr = 747.41

  • Monoclinic, P 21 /c

  • a = 8.182 (2) Å

  • b = 13.573 (2) Å

  • c = 16.2340 (19) Å

  • β = 111.12 (4)°

  • V = 1681.8 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.93 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.363, Tmax = 0.416

  • 16985 measured reflections

  • 3294 independent reflections

  • 2710 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.04

  • 3294 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—N3 2.174 (2)
Co1—N5 2.182 (2)
Co1—N1 2.207 (2)
N3i—Co1—N3 180.0
N3—Co1—N5 88.07 (8)
N3—Co1—N5i 91.93 (8)
N5—Co1—N5i 180.0
N3i—Co1—N1 87.52 (8)
N3—Co1—N1 92.48 (8)
N5—Co1—N1 89.43 (8)
N5i—Co1—N1 90.57 (8)
N1i—Co1—N1 180.00 (11)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯Br1ii 0.85 2.57 3.371 (3) 157
O1W—H1WB⋯Br1 0.86 2.51 3.338 (3) 164
Symmetry code: (ii) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ionothermal synthesis of novel organic-inorganic hybrid materials are not accessible by traditional hydro- or solvothermal reactions (Rogers & Seddon, 2003, Xie et al., 2008, Lin et al., 2007). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric cation, one Br atom and one water molecule. The CoII atom lying on the inversion center of the centrosymmetric cation has a distorted octahedral geometry (Table 1). It is coordinated by six N atoms from six 1-methylimidazole ligands, where N3, N3i, N5 and N5i atoms comprise the equatorial plane, and the other two N atoms, N1 and N1i, occupy the axial positions [symmetry code: (i) 1 - x, 2 - y, 1 - z]. The Co-N bonds [average value = 2.1877 (2) Å] are longer than the Ni-N bonds [average value = 2.065 Å] in the reported Ni complex with the same ligand (Baca et al., 2005).

In the crystal structure, intra- and intermolecular O-H···Br hydrogen bonds (Table 2) link the pairs of uncoordinated water and bromide anions (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Lin et al. (2007); Rogers & Seddon (2003); Xie et al. (2008). For a related structure, see: Baca et al. (2005).

Experimental top

CO(NO3)2.6H2O (0.9 g) and N-methyl imidazole (0.5 g) were placed in a Teflon-line stainless-steel autoclave (25 ml) mixed with 1-ethyl-3-methyl- imidazolium (EMIBr)(1.0 g). The mixtures were heated at 423 K for 3 d, followed by cooling slowly to room temperature. The red block crystals were collected.

Refinement top

H atoms were positioned geometrically, with O-H = 0.8544 and 0.8553 Å (for H2O) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at 30% probability level [symmetry code: (i) 1 - x, 2 - y, 1 - z].
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Hexakis(1-methyl-1H-imidazole-κN3)cobalt(II) dibromide dihydrate top
Crystal data top
[Co(C4H6N2)6]Br2·2H2OF(000) = 762
Mr = 747.41Dx = 1.47 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7560 reflections
a = 8.182 (2) Åθ = 2.5–27.1°
b = 13.573 (2) ŵ = 2.93 mm1
c = 16.2340 (19) ÅT = 298 K
β = 111.12 (4)°Block, red
V = 1681.8 (7) Å30.40 × 0.30 × 0.30 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3294 independent reflections
Radiation source: fine-focus sealed tube2710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 910
Tmin = 0.363, Tmax = 0.416k = 1516
16985 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0649P)2 + 0.2015P]
where P = (Fo2 + 2Fc2)/3
3294 reflections(Δ/σ)max = 0.001
187 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C4H6N2)6]Br2·2H2OV = 1681.8 (7) Å3
Mr = 747.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.182 (2) ŵ = 2.93 mm1
b = 13.573 (2) ÅT = 298 K
c = 16.2340 (19) Å0.40 × 0.30 × 0.30 mm
β = 111.12 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3294 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2710 reflections with I > 2σ(I)
Tmin = 0.363, Tmax = 0.416Rint = 0.071
16985 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.04Δρmax = 0.86 e Å3
3294 reflectionsΔρmin = 0.36 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.03601 (15)
Br10.78110 (4)0.87845 (2)0.56859 (2)0.05972 (14)
O1W0.4155 (4)0.9171 (2)0.3940 (2)0.1105 (11)
H1WA0.38880.97720.39830.166*
H1WB0.49470.90120.44330.166*
N10.3436 (3)0.62856 (14)0.51072 (14)0.0415 (5)
N20.2626 (3)0.77351 (16)0.54359 (16)0.0490 (5)
N30.7232 (3)0.54470 (15)0.61490 (13)0.0419 (5)
N40.9664 (3)0.61811 (16)0.70086 (15)0.0504 (6)
N50.4033 (3)0.41844 (16)0.58900 (13)0.0433 (5)
N60.3497 (3)0.30035 (18)0.66980 (15)0.0539 (6)
C10.3966 (3)0.71343 (19)0.54940 (17)0.0449 (6)
H1A0.51380.73020.57770.054*
C20.1629 (4)0.6342 (2)0.4783 (2)0.0543 (7)
H2A0.08730.58450.44740.065*
C30.1130 (4)0.7236 (2)0.4986 (2)0.0567 (7)
H3A0.00120.74630.48450.068*
C40.2759 (5)0.8748 (2)0.5786 (3)0.0792 (12)
H4A0.39710.89200.60750.119*
H4B0.21730.87850.62020.119*
H4C0.22200.91980.53090.119*
C50.8328 (3)0.61851 (19)0.62204 (17)0.0444 (6)
H5A0.81950.66510.57810.053*
C60.7915 (4)0.4943 (2)0.69380 (18)0.0521 (7)
H6A0.74190.43860.70850.063*
C70.9419 (4)0.5382 (2)0.74685 (19)0.0564 (7)
H7A1.01370.51810.80300.068*
C81.1066 (5)0.6909 (3)0.7314 (3)0.0799 (10)
H8A1.09260.73860.68570.120*
H8B1.21780.65860.74570.120*
H8C1.10170.72340.78300.120*
C90.4120 (4)0.3232 (2)0.60596 (17)0.0480 (6)
H9A0.45610.27700.57710.058*
C100.3301 (4)0.4577 (2)0.6465 (2)0.0626 (8)
H10A0.30630.52420.65020.075*
C110.2980 (5)0.3862 (2)0.6964 (2)0.0663 (9)
H11A0.25020.39400.74000.080*
C120.3336 (6)0.2008 (3)0.7011 (2)0.0862 (12)
H12A0.38050.15390.67130.129*
H12B0.21230.18630.68900.129*
H12C0.39730.19700.76360.129*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0387 (3)0.0319 (3)0.0416 (2)0.00008 (18)0.0197 (2)0.00050 (18)
Br10.0506 (2)0.0458 (2)0.0787 (2)0.00077 (12)0.01838 (17)0.01020 (13)
O1W0.099 (2)0.096 (2)0.109 (2)0.0179 (17)0.0042 (18)0.0335 (18)
N10.0405 (12)0.0390 (12)0.0502 (11)0.0004 (9)0.0227 (10)0.0009 (9)
N20.0508 (14)0.0370 (12)0.0683 (13)0.0033 (9)0.0325 (11)0.0024 (10)
N30.0450 (12)0.0370 (11)0.0444 (11)0.0026 (9)0.0168 (9)0.0005 (9)
N40.0388 (12)0.0544 (14)0.0536 (13)0.0033 (10)0.0112 (11)0.0010 (10)
N50.0483 (13)0.0421 (12)0.0465 (11)0.0038 (10)0.0255 (10)0.0006 (9)
N60.0603 (15)0.0592 (15)0.0490 (12)0.0095 (12)0.0278 (11)0.0090 (11)
C10.0404 (14)0.0441 (14)0.0560 (14)0.0005 (11)0.0244 (12)0.0027 (12)
C20.0385 (15)0.0564 (17)0.0677 (17)0.0003 (12)0.0185 (13)0.0103 (14)
C30.0411 (15)0.0606 (18)0.0697 (17)0.0099 (13)0.0217 (13)0.0048 (14)
C40.083 (3)0.0403 (18)0.130 (3)0.0009 (15)0.057 (3)0.0167 (17)
C50.0403 (14)0.0454 (15)0.0463 (14)0.0014 (11)0.0143 (12)0.0047 (11)
C60.0621 (18)0.0408 (15)0.0522 (15)0.0038 (13)0.0191 (14)0.0072 (12)
C70.0588 (19)0.0551 (17)0.0480 (15)0.0161 (14)0.0104 (14)0.0064 (13)
C80.056 (2)0.083 (3)0.082 (2)0.0173 (18)0.0011 (17)0.0009 (19)
C90.0593 (17)0.0474 (16)0.0450 (13)0.0076 (12)0.0284 (12)0.0002 (11)
C100.076 (2)0.0598 (18)0.0685 (18)0.0081 (16)0.0465 (17)0.0004 (15)
C110.074 (2)0.080 (2)0.0643 (18)0.0034 (17)0.0493 (17)0.0025 (16)
C120.121 (3)0.071 (2)0.082 (2)0.017 (2)0.056 (2)0.0216 (19)
Geometric parameters (Å, º) top
Co1—N3i2.174 (2)N6—C121.466 (4)
Co1—N32.174 (2)C1—H1A0.9300
Co1—N52.182 (2)C2—C31.359 (4)
Co1—N5i2.182 (2)C2—H2A0.9300
Co1—N1i2.207 (2)C3—H3A0.9300
Co1—N12.207 (2)C4—H4A0.9600
O1W—H1WA0.8544C4—H4B0.9600
O1W—H1WB0.8553C4—H4C0.9600
N1—C11.309 (3)C5—H5A0.9300
N1—C21.381 (4)C6—C71.359 (4)
N2—C11.342 (3)C6—H6A0.9300
N2—C31.359 (4)C7—H7A0.9300
N2—C41.477 (4)C8—H8A0.9600
N3—C51.322 (3)C8—H8B0.9600
N3—C61.380 (3)C8—H8C0.9600
N4—C51.351 (3)C9—H9A0.9300
N4—C71.372 (4)C10—C111.349 (4)
N4—C81.458 (4)C10—H10A0.9300
N5—C91.319 (4)C11—H11A0.9300
N5—C101.384 (3)C12—H12A0.9600
N6—C91.346 (3)C12—H12B0.9600
N6—C111.362 (4)C12—H12C0.9600
N3i—Co1—N3180.0N2—C3—C2106.5 (2)
N3i—Co1—N591.93 (8)N2—C3—H3A126.8
N3—Co1—N588.07 (8)C2—C3—H3A126.8
N3i—Co1—N5i88.07 (8)N2—C4—H4A109.5
N3—Co1—N5i91.93 (8)N2—C4—H4B109.5
N5—Co1—N5i180.0H4A—C4—H4B109.5
N3i—Co1—N1i92.48 (8)N2—C4—H4C109.5
N3—Co1—N1i87.52 (8)H4A—C4—H4C109.5
N5—Co1—N1i90.57 (8)H4B—C4—H4C109.5
N5i—Co1—N1i89.43 (8)N3—C5—N4111.9 (2)
N3i—Co1—N187.52 (8)N3—C5—H5A124.1
N3—Co1—N192.48 (8)N4—C5—H5A124.1
N5—Co1—N189.43 (8)C7—C6—N3110.1 (3)
N5i—Co1—N190.57 (8)C7—C6—H6A125.0
N1i—Co1—N1180.00 (11)N3—C6—H6A125.0
H1WA—O1W—H1WB107.2C6—C7—N4106.2 (2)
C1—N1—C2105.0 (2)C6—C7—H7A126.9
C1—N1—Co1129.22 (18)N4—C7—H7A126.9
C2—N1—Co1125.80 (17)N4—C8—H8A109.5
C1—N2—C3106.9 (2)N4—C8—H8B109.5
C1—N2—C4126.4 (2)H8A—C8—H8B109.5
C3—N2—C4126.7 (2)N4—C8—H8C109.5
C5—N3—C6105.0 (2)H8A—C8—H8C109.5
C5—N3—Co1128.35 (17)H8B—C8—H8C109.5
C6—N3—Co1126.31 (18)N5—C9—N6112.3 (2)
C5—N4—C7106.9 (2)N5—C9—H9A123.8
C5—N4—C8126.1 (3)N6—C9—H9A123.8
C7—N4—C8127.0 (3)C11—C10—N5110.7 (3)
C9—N5—C10103.9 (2)C11—C10—H10A124.7
C9—N5—Co1129.10 (17)N5—C10—H10A124.7
C10—N5—Co1126.8 (2)C10—C11—N6106.0 (2)
C9—N6—C11107.1 (2)C10—C11—H11A127.0
C9—N6—C12125.8 (3)N6—C11—H11A127.0
C11—N6—C12127.0 (2)N6—C12—H12A109.5
N1—C1—N2112.3 (2)N6—C12—H12B109.5
N1—C1—H1A123.8H12A—C12—H12B109.5
N2—C1—H1A123.8N6—C12—H12C109.5
C3—C2—N1109.4 (3)H12A—C12—H12C109.5
C3—C2—H2A125.3H12B—C12—H12C109.5
N1—C2—H2A125.3
N3i—Co1—N1—C1157.5 (2)C3—N2—C1—N10.5 (3)
N3—Co1—N1—C122.5 (2)C4—N2—C1—N1178.9 (3)
N5—Co1—N1—C1110.5 (2)C1—N1—C2—C30.3 (3)
N5i—Co1—N1—C169.5 (2)Co1—N1—C2—C3178.83 (19)
N3i—Co1—N1—C224.3 (2)C1—N2—C3—C20.3 (3)
N3—Co1—N1—C2155.7 (2)C4—N2—C3—C2179.1 (3)
N5—Co1—N1—C267.7 (2)N1—C2—C3—N20.0 (3)
N5i—Co1—N1—C2112.3 (2)C6—N3—C5—N40.1 (3)
N5—Co1—N3—C5161.6 (2)Co1—N3—C5—N4173.74 (17)
N5i—Co1—N3—C518.4 (2)C7—N4—C5—N30.7 (3)
N1i—Co1—N3—C5107.7 (2)C8—N4—C5—N3177.7 (3)
N1—Co1—N3—C572.3 (2)C5—N3—C6—C70.5 (3)
N5—Co1—N3—C626.0 (2)Co1—N3—C6—C7173.29 (18)
N5i—Co1—N3—C6154.0 (2)N3—C6—C7—N40.9 (3)
N1i—Co1—N3—C664.6 (2)C5—N4—C7—C60.9 (3)
N1—Co1—N3—C6115.4 (2)C8—N4—C7—C6177.4 (3)
N3i—Co1—N5—C978.8 (2)C10—N5—C9—N60.1 (3)
N3—Co1—N5—C9101.2 (2)Co1—N5—C9—N6175.28 (18)
N1i—Co1—N5—C913.7 (2)C11—N6—C9—N50.3 (3)
N1—Co1—N5—C9166.3 (2)C12—N6—C9—N5177.0 (3)
N3i—Co1—N5—C10106.8 (2)C9—N5—C10—C110.4 (4)
N3—Co1—N5—C1073.2 (2)Co1—N5—C10—C11175.1 (2)
N1i—Co1—N5—C10160.7 (2)N5—C10—C11—N60.6 (4)
N1—Co1—N5—C1019.3 (2)C9—N6—C11—C100.5 (4)
C2—N1—C1—N20.4 (3)C12—N6—C11—C10176.8 (3)
Co1—N1—C1—N2178.95 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Br1ii0.852.573.371 (3)157
O1W—H1WB···Br10.862.513.338 (3)164
Symmetry code: (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C4H6N2)6]Br2·2H2O
Mr747.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.182 (2), 13.573 (2), 16.2340 (19)
β (°) 111.12 (4)
V3)1681.8 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.93
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.363, 0.416
No. of measured, independent and
observed [I > 2σ(I)] reflections
16985, 3294, 2710
Rint0.071
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.04
No. of reflections3294
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.36

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—N32.174 (2)Co1—N12.207 (2)
Co1—N52.182 (2)
N3i—Co1—N3180.0N3—Co1—N192.48 (8)
N3—Co1—N588.07 (8)N5—Co1—N189.43 (8)
N3—Co1—N5i91.93 (8)N5i—Co1—N190.57 (8)
N5—Co1—N5i180.0N1i—Co1—N1180.00 (11)
N3i—Co1—N187.52 (8)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···Br1ii0.852.573.371 (3)156.8
O1W—H1WB···Br10.862.513.338 (3)163.9
Symmetry code: (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20871039).

References

First citationBaca, S. G., Filippova, I. G., Franz, C, P., Ambrus, C., Gdaniec, M., Stoeckli-Evans, H., Simonov, Y. A., Gherco, O. A., Bejan, T., Gerbeleu, N. & Decurtins, S. (2005). Inorg. Chim. Acta, 358, 1762–1770.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, Z. J., Wragg, D. S., Warren, J. E. & Morris, R. E. (2007). J. Am. Chem. Soc. 129, 10334–10335.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRogers, R. D. & Seddon, K. R. (2003). Science, 302, 792–793.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z. L., Feng, M. L., Li, J. R. & Huang, X. Y. (2008). Inorg. Chem. Commun. 11, 1143–1146.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds