organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-ethyl­amino-3-nitro­benzoate

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bCollege of Science, Nanjing University of Technolgy, Xinmofan Road No.5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 7 December 2008; accepted 22 December 2008; online 8 January 2009)

In the mol­ecule of the title compound, C11H14N2O4, a bifurcated intra/intermolecular N—H⋯(O,O) hydrogen bond occurs.The intramolecular component results in a non-planar six-membered ring with a flattened-boat conformation. In the crystal structure, the inter­molecular interaction links the mol­ecules into chains parallel to the b axis.

Related literature

For a related structure, see: Ates-Alagoz et al. (2001[Ates-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455-460.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O4

  • Mr = 238.24

  • Monoclinic, P 21

  • a = 4.2360 (8) Å

  • b = 16.180 (3) Å

  • c = 8.4890 (17) Å

  • β = 95.80 (3)°

  • V = 578.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.969, Tmax = 0.990

  • 1213 measured reflections

  • 1066 independent reflections

  • 841 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.173

  • S = 1.01

  • 1066 reflections

  • 154 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.00 2.645 (10) 131
N1—H1A⋯O3i 0.86 2.45 3.053 (10) 128
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of benzoic acid are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C3-C8) is, of course, planar. The intramolecular N-H···O hydrogen bond (Table 1) results in a nonplanar six-membered ring B (O2/N1/N2/C3/C4/H1A), having total puckering amplitude, QT, of 0.163 (2) Å, flattened-boat conformation [ϕ = 52.00 (3)° and θ = 19.29 (4)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into chains parallel to the b axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Ates-Alagoz et al. (2001). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975).

Experimental top

For the preparation of the title compound, ethyl 4-chloro-3-nitrobenzoate (5.3 g, 0.023 mol) was refluxed in ethyl amine (20 ml) and tetrahydrofuran (50 ml) for 2 h. Then, solvents were evaporated and water was added to give yellow precipate. It was collected by filtration and washed with cold ethanol (2 X 15 ml) to afford the yellow solid (yield; 4.4 g, 80%) (Ates-Alagoz et al., 2001). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Ethyl 4-ethylamino-3-nitrobenzoate top
Crystal data top
C11H14N2O4F(000) = 252
Mr = 238.24Dx = 1.367 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 4.2360 (8) Åθ = 10–12°
b = 16.180 (3) ŵ = 0.11 mm1
c = 8.4890 (17) ÅT = 294 K
β = 95.80 (3)°Block, colorless
V = 578.8 (2) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
841 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.2°, θmin = 2.4°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 019
Tmin = 0.969, Tmax = 0.990l = 010
1213 measured reflections3 standard reflections every 120 min
1066 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 1.25P]
where P = (Fo2 + 2Fc2)/3
1066 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.24 e Å3
4 restraintsΔρmin = 0.30 e Å3
Crystal data top
C11H14N2O4V = 578.8 (2) Å3
Mr = 238.24Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.2360 (8) ŵ = 0.11 mm1
b = 16.180 (3) ÅT = 294 K
c = 8.4890 (17) Å0.30 × 0.20 × 0.10 mm
β = 95.80 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
841 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.969, Tmax = 0.9903 standard reflections every 120 min
1213 measured reflections intensity decay: none
1066 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0774 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
1066 reflectionsΔρmin = 0.30 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7012 (15)1.1050 (4)0.7940 (7)0.0772 (18)
O20.9134 (16)1.1622 (4)0.5988 (8)0.083 (2)
O30.9764 (13)0.7330 (4)0.7615 (6)0.0589 (15)
O40.7965 (13)0.8254 (3)0.9244 (6)0.0564 (14)
N11.2210 (17)1.0712 (5)0.4054 (8)0.065 (2)
H1A1.15911.12040.42560.078*
N20.8667 (17)1.0957 (5)0.6810 (9)0.0659 (19)
C11.212 (2)1.0329 (6)0.1174 (10)0.071 (2)
H1B1.34431.02590.03280.106*
H1C1.05711.07500.08910.106*
H1D1.10690.98180.13550.106*
C21.414 (2)1.0581 (6)0.2654 (10)0.071 (3)
H2A1.52461.10890.24530.085*
H2B1.57191.01570.29250.085*
C31.1440 (15)1.0085 (4)0.4988 (7)0.0383 (15)
C40.9754 (15)1.0194 (5)0.6315 (8)0.0416 (16)
C50.9015 (15)0.9543 (4)0.7232 (8)0.0401 (17)
H5A0.78580.96460.80860.048*
C60.9927 (16)0.8715 (4)0.6946 (8)0.0404 (16)
C71.1639 (14)0.8632 (4)0.5582 (7)0.0393 (16)
H7A1.23330.81050.53480.047*
C81.2314 (16)0.9232 (4)0.4633 (8)0.0377 (16)
H8A1.33420.91180.37400.045*
C90.9235 (16)0.8047 (4)0.7942 (8)0.0376 (15)
C100.7087 (18)0.7563 (5)1.0314 (8)0.0483 (19)
H10A0.89160.72221.06500.058*
H10B0.54320.72170.97870.058*
C110.590 (2)0.8020 (6)1.1726 (9)0.060 (2)
H11A0.52110.76251.24630.090*
H11B0.41570.83721.13570.090*
H11C0.75900.83481.22400.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.095 (4)0.068 (4)0.073 (4)0.010 (4)0.028 (4)0.005 (4)
O20.094 (5)0.079 (5)0.078 (5)0.004 (4)0.019 (4)0.003 (4)
O30.068 (3)0.052 (4)0.059 (3)0.004 (3)0.015 (3)0.002 (3)
O40.070 (3)0.049 (3)0.051 (3)0.005 (3)0.009 (3)0.002 (3)
N10.072 (4)0.063 (5)0.059 (4)0.011 (4)0.005 (4)0.008 (4)
N20.068 (4)0.068 (5)0.061 (4)0.001 (4)0.002 (4)0.003 (4)
C10.083 (6)0.070 (6)0.061 (5)0.008 (5)0.012 (4)0.004 (5)
C20.071 (5)0.075 (7)0.067 (6)0.008 (5)0.012 (4)0.005 (5)
C30.043 (3)0.037 (4)0.033 (3)0.006 (3)0.003 (3)0.003 (3)
C40.040 (3)0.045 (4)0.039 (4)0.002 (3)0.003 (3)0.004 (3)
C50.039 (3)0.043 (4)0.038 (4)0.001 (3)0.002 (3)0.001 (3)
C60.044 (4)0.034 (4)0.043 (4)0.002 (3)0.006 (3)0.002 (3)
C70.044 (4)0.037 (4)0.037 (4)0.004 (3)0.005 (3)0.002 (3)
C80.050 (4)0.029 (4)0.035 (4)0.005 (3)0.009 (3)0.005 (3)
C90.047 (4)0.029 (4)0.037 (4)0.002 (3)0.004 (3)0.001 (3)
C100.055 (4)0.052 (5)0.038 (4)0.002 (4)0.005 (3)0.006 (4)
C110.062 (5)0.064 (5)0.053 (5)0.003 (4)0.007 (4)0.002 (4)
Geometric parameters (Å, º) top
O1—N21.253 (9)C3—C81.467 (9)
O2—N21.308 (10)C4—C51.365 (10)
O3—C91.219 (9)C5—C61.422 (9)
O4—C91.320 (8)C5—H5A0.9300
O4—C101.510 (8)C6—C91.420 (9)
N1—C21.523 (11)C6—C71.434 (9)
N1—C31.349 (10)C7—C81.311 (9)
N1—H1A0.8600C7—H7A0.9300
N2—C41.397 (10)C8—H8A0.9300
C1—C21.502 (12)C10—C111.535 (10)
C1—H1B0.9600C10—H10A0.9700
C1—H1C0.9600C10—H10B0.9700
C1—H1D0.9600C11—H11A0.9600
C2—H2A0.9700C11—H11B0.9600
C2—H2B0.9700C11—H11C0.9600
C3—C41.405 (9)
C2—N1—H1A118.9C4—C5—H5A118.4
C3—N1—C2122.3 (8)C6—C5—H5A118.4
C3—N1—H1A118.9C9—C6—C5122.6 (6)
O1—N2—O2115.9 (8)C9—C6—C7124.2 (6)
O1—N2—C4124.3 (8)C5—C6—C7113.2 (6)
O2—N2—C4119.6 (7)C8—C7—C6126.0 (7)
C9—O4—C10117.5 (6)C8—C7—H7A117.0
C2—C1—H1B109.5C6—C7—H7A117.0
C2—C1—H1C109.5C7—C8—C3119.6 (6)
H1B—C1—H1C109.5C7—C8—H8A120.2
C2—C1—H1D109.5C3—C8—H8A120.2
H1B—C1—H1D109.5O3—C9—O4122.1 (7)
H1C—C1—H1D109.5O3—C9—C6122.3 (6)
C1—C2—N1112.7 (7)O4—C9—C6115.6 (6)
C1—C2—H2A109.0O4—C10—C11103.4 (6)
N1—C2—H2A109.0O4—C10—H10A111.1
C1—C2—H2B109.0C11—C10—H10A111.1
N1—C2—H2B109.0O4—C10—H10B111.1
H2A—C2—H2B107.8C11—C10—H10B111.1
N1—C3—C4123.3 (7)H10A—C10—H10B109.0
N1—C3—C8120.4 (6)C10—C11—H11A109.5
C4—C3—C8116.3 (6)C10—C11—H11B109.5
C5—C4—N2114.2 (6)H11A—C11—H11B109.5
C5—C4—C3121.6 (7)C10—C11—H11C109.5
N2—C4—C3124.2 (7)H11A—C11—H11C109.5
C4—C5—C6123.2 (6)H11B—C11—H11C109.5
C3—N1—C2—C184.9 (10)C4—C5—C6—C71.2 (9)
C2—N1—C3—C4177.9 (6)C9—C6—C7—C8179.8 (7)
C2—N1—C3—C83.1 (11)C5—C6—C7—C81.2 (9)
O1—N2—C4—C53.6 (10)C6—C7—C8—C33.4 (10)
O2—N2—C4—C5177.5 (7)N1—C3—C8—C7177.8 (7)
O1—N2—C4—C3175.8 (7)C4—C3—C8—C73.1 (9)
O2—N2—C4—C31.9 (10)C10—O4—C9—O31.7 (10)
N1—C3—C4—C5179.9 (7)C10—O4—C9—C6178.0 (6)
C8—C3—C4—C50.9 (8)C5—C6—C9—O3173.2 (7)
N1—C3—C4—N20.6 (10)C7—C6—C9—O37.9 (11)
C8—C3—C4—N2178.5 (6)C5—C6—C9—O46.5 (10)
N2—C4—C5—C6179.3 (6)C7—C6—C9—O4172.4 (6)
C3—C4—C5—C61.3 (9)C9—O4—C10—C11176.7 (6)
C4—C5—C6—C9177.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.002.645 (10)131
N1—H1A···O3i0.862.453.053 (10)128
Symmetry code: (i) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N2O4
Mr238.24
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)4.2360 (8), 16.180 (3), 8.4890 (17)
β (°) 95.80 (3)
V3)578.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.969, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
1213, 1066, 841
Rint0.018
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.173, 1.01
No. of reflections1066
No. of parameters154
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.30

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.002.645 (10)131.00
N1—H1A···O3i0.862.453.053 (10)128.00
Symmetry code: (i) x+2, y+1/2, z+1.
 

Acknowledgements

The authors thank Dr Shan Liu, Nanjing University of Technology, for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtes-Alagoz, Z. & Buyukbingol, E. (2001). Heterocycl. Commun. 7, 455-460.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds