organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Amino­phenyl­sulfon­yl)aniline

aIslamic Azad University, Tehran South Branch, Tehran, Iran, and bIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: myousefi50@yahoo.com

(Received 11 December 2008; accepted 19 December 2008; online 8 January 2009)

In the title compound, C12H12N2O2S, the aromatic rings are oriented at a dihedral angle of 79.48 (4)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two five-membered rings with envelope conformations. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules. ππ Contacts between the benzene rings, [centroid–centroid distance = 4.211 (3) Å] may further stabilize the structure.

Related literature

For general background, see: Block (1992[Block, E. (1992). Angew. Chem. Int. Ed. Engl. 31, 1135-1178.]); Holland (1988[Holland, H. L. (1988). Chem. Rev. 88, 473-485.]); McMohan et al. (1993[McMohan, J. B., Gulakowsky, R. J., Weislow, O. S., Schoktz, R. J., Narayanan, V. L., Clanton, D. J., Pedemonte, R., Wassmundt, F. W., Buckheit, R. W., Decker, W. D., White, E. L., Bader, J. P. & Boyd, M. R. (1993). Antimicrob. Agents Chemother. 37, 754-760.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O2S

  • Mr = 248.30

  • Monoclinic, P 21 /c

  • a = 8.6282 (17) Å

  • b = 8.8017 (18) Å

  • c = 16.052 (3) Å

  • β = 98.12 (3)°

  • V = 1206.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.910, Tmax = 0.933

  • 18754 measured reflections

  • 4145 independent reflections

  • 2971 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.218

  • S = 1.12

  • 4145 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O2i 0.86 2.25 3.091 (5) 166
N2—H2A⋯O1ii 0.86 2.29 3.069 (4) 151
N2—H2B⋯O2iii 0.86 2.38 3.187 (4) 156
C1—H1⋯O2 0.93 2.55 2.924 (4) 104
C8—H8⋯O1 0.93 2.51 2.895 (3) 105
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) x-1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Aryl sulfones and sulfoxides are interesting functional groups possessing manifold reactivity for conversion to a variety of organosulfur compounds in the fields of drugs and pharmaceuticals (Holland, 1988; Block, 1992). In particular, aryl sulfones have received much attention as powerful anti-HIV-1 agents (McMohan et al., 1993). We report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (C7-C12) are, of course, planar, and they are oriented at a dihedral angle of 79.48 (4)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formations of two five-membered rings C (S1/O1/C7/C8/H8) and D (S1/O2/C1/C6/H1), having envelope conformations with atoms O1 and O2 displaced by -0.386 (4) Å and 0.300 (4) Å, respectively, from the planes of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the phenyl rings, Cg1—Cg1i [symmetry code: (i) 1 - x, -y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 4.211 (3) Å.

Related literature top

For general background, see: Block (1992); Holland (1988); McMohan et al. (1993). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of 3,3'-diaminodiphenyl sulfone (0.52 g, 2.0 mmol) in methanol (10 ml) was added to a solution of pyrazinecarboxylic acid (0.51 g, 4.0 mmol) in methanol (20 ml), and the resulting yellow solution was stirred for 40 min at 313 K. It was left to evaporate slowly at room temperature. After one week, yellow prismatic crystals of the title compound were isolated (yield; 0.45 g, 86.5%).

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH2) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3-(3-Aminophenylsulfonyl)aniline top
Crystal data top
C12H12N2O2SF(000) = 520
Mr = 248.30Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1532 reflections
a = 8.6282 (17) Åθ = 2.4–32.0°
b = 8.8017 (18) ŵ = 0.26 mm1
c = 16.052 (3) ÅT = 298 K
β = 98.12 (3)°Colorless, yellow
V = 1206.8 (4) Å30.40 × 0.30 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4145 independent reflections
Radiation source: fine-focus sealed tube2971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ and ω scansθmax = 32.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.910, Tmax = 0.933k = 1213
18754 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.6213P]
where P = (Fo2 + 2Fc2)/3
4145 reflections(Δ/σ)max = 0.003
154 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C12H12N2O2SV = 1206.8 (4) Å3
Mr = 248.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.6282 (17) ŵ = 0.26 mm1
b = 8.8017 (18) ÅT = 298 K
c = 16.052 (3) Å0.40 × 0.30 × 0.28 mm
β = 98.12 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4145 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2971 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.933Rint = 0.091
18754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.218H-atom parameters constrained
S = 1.12Δρmax = 0.64 e Å3
4145 reflectionsΔρmin = 0.26 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25722 (7)0.35241 (8)0.12847 (4)0.0538 (2)
O10.2448 (2)0.4691 (2)0.06463 (15)0.0705 (6)
O20.3825 (2)0.3662 (3)0.19740 (15)0.0734 (6)
N10.4728 (5)0.1878 (5)0.1176 (3)0.1187 (14)
H1A0.47570.27450.09330.142*
H1B0.52880.17220.16560.142*
N20.3243 (3)0.4789 (4)0.1136 (2)0.0844 (9)
H2B0.41130.47780.13400.101*
H2A0.31830.52520.06700.101*
C10.3714 (3)0.0656 (3)0.11930 (19)0.0633 (7)
H10.43080.08540.17110.076*
C20.3800 (4)0.0758 (4)0.0805 (2)0.0765 (9)
C30.2912 (6)0.1002 (5)0.0046 (3)0.0977 (13)
H30.29660.19460.02080.117*
C40.1948 (6)0.0077 (5)0.0357 (3)0.0979 (13)
H40.13680.01270.08790.117*
C50.1844 (5)0.1493 (4)0.0026 (2)0.0785 (9)
H50.11870.22440.02340.094*
C60.2733 (3)0.1754 (3)0.07936 (18)0.0558 (6)
C70.0781 (3)0.3441 (3)0.16923 (16)0.0498 (5)
C80.0511 (3)0.4117 (3)0.12433 (16)0.0513 (5)
H80.04330.46050.07370.062*
C90.1947 (3)0.4063 (3)0.15552 (18)0.0545 (6)
C100.2009 (4)0.3306 (4)0.2309 (2)0.0645 (7)
H100.29560.32510.25220.077*
C110.0704 (4)0.2637 (4)0.2746 (2)0.0735 (8)
H110.07800.21400.32500.088*
C120.0725 (4)0.2692 (4)0.24466 (19)0.0660 (7)
H120.16130.22420.27410.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0398 (3)0.0559 (4)0.0663 (4)0.0023 (2)0.0092 (2)0.0031 (3)
O10.0610 (12)0.0647 (12)0.0897 (15)0.0026 (9)0.0239 (11)0.0198 (11)
O20.0473 (10)0.0876 (15)0.0821 (14)0.0077 (10)0.0019 (10)0.0096 (12)
N10.136 (3)0.095 (2)0.130 (3)0.045 (2)0.036 (3)0.002 (2)
N20.0493 (13)0.108 (2)0.101 (2)0.0197 (14)0.0271 (14)0.0260 (18)
C10.0570 (15)0.0685 (17)0.0684 (17)0.0104 (12)0.0225 (13)0.0047 (14)
C20.084 (2)0.0656 (18)0.088 (2)0.0161 (16)0.0439 (19)0.0042 (16)
C30.135 (4)0.079 (2)0.089 (3)0.002 (2)0.050 (3)0.020 (2)
C40.124 (4)0.091 (3)0.079 (2)0.004 (3)0.018 (2)0.013 (2)
C50.083 (2)0.082 (2)0.0693 (19)0.0001 (18)0.0068 (17)0.0018 (17)
C60.0501 (12)0.0577 (14)0.0627 (15)0.0024 (10)0.0182 (11)0.0013 (11)
C70.0449 (11)0.0504 (12)0.0552 (13)0.0016 (9)0.0105 (10)0.0026 (10)
C80.0450 (11)0.0535 (13)0.0572 (13)0.0022 (10)0.0131 (10)0.0021 (11)
C90.0466 (12)0.0540 (13)0.0652 (15)0.0025 (10)0.0155 (11)0.0061 (11)
C100.0601 (15)0.0708 (18)0.0678 (17)0.0050 (13)0.0272 (13)0.0045 (13)
C110.0748 (19)0.087 (2)0.0623 (17)0.0027 (16)0.0236 (15)0.0147 (16)
C120.0609 (16)0.0750 (19)0.0623 (16)0.0042 (14)0.0097 (13)0.0128 (14)
Geometric parameters (Å, º) top
O1—S11.444 (2)C5—C61.376 (5)
O2—S11.439 (2)C5—H50.9300
N1—H1A0.8600C6—S11.760 (3)
N1—H1B0.8600C7—C81.375 (4)
N2—H2B0.8600C7—C121.386 (4)
N2—H2A0.8600C7—S11.763 (2)
C1—C61.382 (4)C8—C91.401 (3)
C1—C21.398 (4)C8—H80.9300
C1—H10.9300C9—N21.378 (4)
C2—N11.353 (5)C9—C101.390 (4)
C2—C31.361 (6)C10—C111.372 (5)
C3—C41.365 (6)C10—H100.9300
C3—H30.9300C11—C121.386 (4)
C4—C51.398 (5)C11—H110.9300
C4—H40.9300C12—H120.9300
O1—S1—C6108.32 (13)C6—C5—C4118.7 (4)
O1—S1—C7108.16 (12)C6—C5—H5120.6
O2—S1—O1117.27 (14)C4—C5—H5120.6
O2—S1—C6108.72 (14)C5—C6—C1121.7 (3)
O2—S1—C7108.72 (13)C5—C6—S1118.7 (2)
C6—S1—C7104.97 (12)C1—C6—S1119.6 (2)
C2—N1—H1A120.0C8—C7—C12122.6 (2)
C2—N1—H1B120.0C8—C7—S1118.43 (19)
H1A—N1—H1B120.0C12—C7—S1119.0 (2)
C9—N2—H2A120.0C7—C8—C9119.4 (2)
C9—N2—H2B120.0C7—C8—H8120.3
H2B—N2—H2A120.0C9—C8—H8120.3
C6—C1—C2119.0 (3)N2—C9—C10121.3 (2)
C6—C1—H1120.5N2—C9—C8120.5 (3)
C2—C1—H1120.5C10—C9—C8118.2 (3)
N1—C2—C3120.1 (4)C11—C10—C9121.4 (3)
N1—C2—C1121.2 (4)C11—C10—H10119.3
C3—C2—C1118.7 (3)C9—C10—H10119.3
C2—C3—C4122.9 (4)C10—C11—C12120.9 (3)
C2—C3—H3118.5C10—C11—H11119.5
C4—C3—H3118.5C12—C11—H11119.5
C3—C4—C5119.0 (4)C7—C12—C11117.5 (3)
C3—C4—H4120.5C7—C12—H12121.2
C5—C4—H4120.5C11—C12—H12121.2
C6—C1—C2—N1179.1 (3)C9—C10—C11—C120.2 (5)
C6—C1—C2—C30.0 (4)C8—C7—C12—C110.0 (5)
N1—C2—C3—C4179.6 (4)S1—C7—C12—C11179.5 (2)
C1—C2—C3—C40.4 (6)C10—C11—C12—C70.1 (5)
C2—C3—C4—C50.8 (7)C5—C6—S1—O2167.8 (2)
C3—C4—C5—C60.6 (6)C1—C6—S1—O213.6 (3)
C4—C5—C6—C10.2 (5)C5—C6—S1—O139.4 (3)
C4—C5—C6—S1178.7 (3)C1—C6—S1—O1142.1 (2)
C2—C1—C6—C50.1 (4)C5—C6—S1—C776.0 (3)
C2—C1—C6—S1178.4 (2)C1—C6—S1—C7102.6 (2)
C12—C7—C8—C90.4 (4)C8—C7—S1—O2144.7 (2)
S1—C7—C8—C9179.9 (2)C12—C7—S1—O235.7 (3)
C7—C8—C9—N2177.2 (3)C8—C7—S1—O116.4 (3)
C7—C8—C9—C100.7 (4)C12—C7—S1—O1164.1 (2)
N2—C9—C10—C11177.2 (3)C8—C7—S1—C699.1 (2)
C8—C9—C10—C110.6 (5)C12—C7—S1—C680.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.253.091 (5)166
N2—H2A···O1ii0.862.293.069 (4)151
N2—H2B···O2iii0.862.383.187 (4)156
C1—H1···O20.932.552.924 (4)104
C8—H8···O10.932.512.895 (3)105
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC12H12N2O2S
Mr248.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.6282 (17), 8.8017 (18), 16.052 (3)
β (°) 98.12 (3)
V3)1206.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.910, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
18754, 4145, 2971
Rint0.091
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.218, 1.12
No. of reflections4145
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O2i0.862.253.091 (5)166.00
N2—H2A···O1ii0.862.293.069 (4)151.00
N2—H2B···O2iii0.862.383.187 (4)156.00
C1—H1···O20.932.552.924 (4)104.00
C8—H8···O10.932.512.895 (3)105.00
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1, z; (iii) x1, y, z.
 

Acknowledgements

We are grateful to the Islamic Azad University, Shahr-e-Rey Branch, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBlock, E. (1992). Angew. Chem. Int. Ed. Engl. 31, 1135–1178.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolland, H. L. (1988). Chem. Rev. 88, 473–485.  CrossRef CAS Web of Science Google Scholar
First citationMcMohan, J. B., Gulakowsky, R. J., Weislow, O. S., Schoktz, R. J., Narayanan, V. L., Clanton, D. J., Pedemonte, R., Wassmundt, F. W., Buckheit, R. W., Decker, W. D., White, E. L., Bader, J. P. & Boyd, M. R. (1993). Antimicrob. Agents Chemother. 37, 754–760.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds