organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­benzyl­­idene­amino)pyridinum iodide

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 17 December 2008; accepted 23 December 2008; online 8 January 2009)

In the title compound, C12H10ClN2+·I, the aromatic rings are oriented at a dihedral angle of 54.55 (3)°. In the crystal structure, inter­molecular C—H⋯I and C—H⋯Cl hydrogen bonds link the mol­ecules.

Related literature

For background, see: Okamoto et al. (1967[Okamoto, T., Hirobe, M., Sato, R. (1967). Yakugaku Zasshi, 87, 994-996.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClN2+·I

  • Mr = 344.57

  • Triclinic, [P \overline 1]

  • a = 6.5105 (14) Å

  • b = 7.1748 (15) Å

  • c = 14.223 (3) Å

  • α = 76.893 (3)°

  • β = 79.183 (3)°

  • γ = 80.753 (3)°

  • V = 630.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.72 mm−1

  • T = 291 (2) K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.772, Tmax = 0.812

  • 3220 measured reflections

  • 2205 independent reflections

  • 1892 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.093

  • S = 1.05

  • 2205 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯I1 0.93 3.04 3.857 (5) 147
C5—H5⋯Cl1i 0.93 2.79 3.691 (6) 162
Symmetry code: (i) -x, -y, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of 1-aminopyidium iodide are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C5) and B (C7-C12) are, of course, planar, and they are oriented at a dihedral angle of 54.55 (3)°.

In the crystal structure, intramolecular C-H···I and intermolecular C-H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the pyridine rings and the benzene rings, Cg1—Cg1i and Cg2—Cg2ii [symmetry codes: (i) 1 - x, -y, -z; (ii) 1 - x, -y, 1 - z, where Cg1 and Cg2 are centroids of the rings A (N1/C1-C5) and B (C7-C12) , respectively] may further stabilize the structure, with centroid-centroid distances of 4.130 (3) Å and 4.056 (3) Å.

Related literature top

For background, see: Okamoto et al. (1967). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 1-aminopyridinium iodide (22.2 g, 0.10 mol) was dissolved in ethanol (20 ml), 4-methylbenzaldehyde (12.4 g, 0.1 mol) was added with stirring, and then the mixture was heated at reflux for 5 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold ethanol (2 X 10 ml) to obtain a yellow solid (yield; 24.0 g, 70%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic and methine H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
1-(4-Chlorobenzylideneamino)pyridinum iodide top
Crystal data top
C12H10ClN2+·IZ = 2
Mr = 344.57F(000) = 332
Triclinic, P1Dx = 1.814 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5105 (14) ÅCell parameters from 25 reflections
b = 7.1748 (15) Åθ = 2.1–25.3°
c = 14.223 (3) ŵ = 2.72 mm1
α = 76.893 (3)°T = 291 K
β = 79.183 (3)°Block, yellow
γ = 80.753 (3)°0.10 × 0.10 × 0.08 mm
V = 630.7 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.772, Tmax = 0.812l = 1516
3220 measured reflections3 standard reflections every 120 min
2205 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0479P)2]
where P = (Fo2 + 2Fc2)/3
2205 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C12H10ClN2+·Iγ = 80.753 (3)°
Mr = 344.57V = 630.7 (2) Å3
Triclinic, P1Z = 2
a = 6.5105 (14) ÅMo Kα radiation
b = 7.1748 (15) ŵ = 2.72 mm1
c = 14.223 (3) ÅT = 291 K
α = 76.893 (3)°0.10 × 0.10 × 0.08 mm
β = 79.183 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1892 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.772, Tmax = 0.8123 standard reflections every 120 min
3220 measured reflections intensity decay: none
2205 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.53 e Å3
2205 reflectionsΔρmin = 0.63 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.91966 (5)0.25912 (5)0.16564 (2)0.05410 (17)
Cl10.1793 (2)0.4285 (2)0.64323 (10)0.0562 (3)
N10.4087 (6)0.1676 (5)0.2056 (3)0.0410 (9)
N20.3499 (6)0.1179 (6)0.3000 (3)0.0434 (9)
C10.6038 (8)0.1437 (7)0.1537 (4)0.0495 (12)
H10.70030.09120.17750.059*
C20.6541 (10)0.1996 (7)0.0648 (4)0.0608 (15)
H20.78630.18520.02740.073*
C30.5076 (10)0.2770 (7)0.0313 (4)0.0585 (14)
H30.54040.31310.02910.070*
C40.3107 (11)0.3012 (8)0.0878 (4)0.0654 (16)
H40.21110.35330.06580.079*
C50.2669 (9)0.2469 (7)0.1763 (4)0.0562 (13)
H50.13800.26540.21600.067*
C60.3740 (8)0.0561 (7)0.2976 (3)0.0451 (11)
H60.42400.13260.23820.054*
C70.3254 (7)0.1391 (7)0.3855 (3)0.0415 (11)
C80.2488 (7)0.0346 (7)0.4776 (3)0.0442 (11)
H80.22890.09370.48510.053*
C90.2026 (8)0.1216 (7)0.5574 (3)0.0474 (12)
H90.15100.05360.61890.057*
C100.2355 (7)0.3145 (7)0.5436 (3)0.0424 (11)
C110.3049 (8)0.4181 (7)0.4539 (3)0.0479 (12)
H110.32020.54760.44610.058*
C120.3526 (8)0.3297 (7)0.3745 (3)0.0460 (11)
H120.40330.39920.31320.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0580 (3)0.0587 (3)0.0457 (2)0.01153 (17)0.00263 (16)0.01233 (16)
Cl10.0519 (8)0.0723 (9)0.0497 (7)0.0091 (6)0.0010 (6)0.0280 (6)
N10.041 (2)0.043 (2)0.039 (2)0.0075 (18)0.0030 (18)0.0090 (17)
N20.045 (2)0.048 (2)0.038 (2)0.0064 (18)0.0026 (17)0.0132 (17)
C10.055 (3)0.048 (3)0.043 (3)0.004 (2)0.004 (2)0.009 (2)
C20.076 (4)0.050 (3)0.046 (3)0.001 (3)0.009 (3)0.010 (2)
C30.083 (4)0.047 (3)0.044 (3)0.009 (3)0.000 (3)0.016 (2)
C40.094 (5)0.050 (3)0.061 (4)0.006 (3)0.023 (3)0.021 (3)
C50.060 (4)0.055 (3)0.055 (3)0.009 (3)0.008 (3)0.014 (3)
C60.050 (3)0.049 (3)0.036 (3)0.001 (2)0.008 (2)0.010 (2)
C70.037 (3)0.050 (3)0.038 (3)0.003 (2)0.008 (2)0.014 (2)
C80.041 (3)0.046 (3)0.043 (3)0.004 (2)0.003 (2)0.009 (2)
C90.047 (3)0.056 (3)0.036 (3)0.007 (2)0.000 (2)0.008 (2)
C100.034 (3)0.056 (3)0.041 (3)0.006 (2)0.006 (2)0.017 (2)
C110.055 (3)0.044 (3)0.046 (3)0.008 (2)0.009 (2)0.009 (2)
C120.052 (3)0.047 (3)0.037 (3)0.010 (2)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Cl1—C101.746 (5)C5—H50.9300
N1—C51.331 (7)C6—C71.465 (6)
N1—C11.359 (6)C6—H60.9300
N1—N21.434 (5)C7—C121.377 (6)
N2—C61.275 (6)C7—C81.399 (6)
C1—C21.379 (7)C8—C91.378 (6)
C1—H10.9300C8—H80.9300
C2—C31.380 (8)C9—C101.399 (7)
C2—H20.9300C9—H90.9300
C3—C41.393 (9)C10—C111.358 (7)
C3—H30.9300C11—C121.380 (6)
C4—C51.367 (7)C11—H110.9300
C4—H40.9300C12—H120.9300
C5—N1—C1123.4 (4)N2—C6—H6119.0
C5—N1—N2116.0 (4)C7—C6—H6119.0
C1—N1—N2120.4 (4)C12—C7—C8119.8 (4)
C6—N2—N1112.2 (4)C12—C7—C6117.4 (4)
N1—C1—C2118.0 (5)C8—C7—C6122.8 (4)
N1—C1—H1121.0C9—C8—C7120.1 (4)
C2—C1—H1121.0C9—C8—H8119.9
C1—C2—C3119.7 (5)C7—C8—H8119.9
C1—C2—H2120.1C8—C9—C10118.4 (4)
C3—C2—H2120.1C8—C9—H9120.8
C2—C3—C4120.2 (5)C10—C9—H9120.8
C2—C3—H3119.9C11—C10—C9121.8 (4)
C4—C3—H3119.9C11—C10—Cl1118.7 (4)
C5—C4—C3118.6 (5)C9—C10—Cl1119.5 (4)
C5—C4—H4120.7C10—C11—C12119.5 (4)
C3—C4—H4120.7C10—C11—H11120.2
N1—C5—C4120.0 (5)C12—C11—H11120.2
N1—C5—H5120.0C7—C12—C11120.4 (4)
C4—C5—H5120.0C7—C12—H12119.8
N2—C6—C7122.0 (4)C11—C12—H12119.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I10.933.043.857 (5)147
C5—H5···Cl1i0.932.793.691 (6)162
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H10ClN2+·I
Mr344.57
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)6.5105 (14), 7.1748 (15), 14.223 (3)
α, β, γ (°)76.893 (3), 79.183 (3), 80.753 (3)
V3)630.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.72
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.772, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
3220, 2205, 1892
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.093, 1.05
No. of reflections2205
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.63

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I10.933.043.857 (5)147.00
C5—H5···Cl1i0.932.793.691 (6)162.00
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOkamoto, T., Hirobe, M., Sato, R. (1967). Yakugaku Zasshi, 87, 994–996.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds