organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Benzyl­­idene­amino)pyridinum iodide

aCollege of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 18 December 2008; accepted 23 December 2008; online 8 January 2009)

In the title compound, C12H11N2+·I, the aromatic rings are oriented at a dihedral angle of 73.40 (3)°. In the crystal structure, ππ contacts between the pyridine rings and the benzene and pyridine rings [centroid–centroid distances = 3.548 (3) and 4.211 (3) Å] may stabilize the structure.

Related literature

For background, see: Okamoto et al. (1967). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11N2+·I

  • Mr = 310.13

  • Monoclinic, P 21 /c

  • a = 10.5722 (17) Å

  • b = 7.8219 (13) Å

  • c = 15.386 (3) Å

  • β = 108.354 (2)°

  • V = 1207.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.62 mm−1

  • T = 291 (2) K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.727, Tmax = 0.780

  • 5768 measured reflections

  • 2133 independent reflections

  • 1713 reflections with I > 2σ(I)

  • Rint = 0.067

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 0.94

  • 2133 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Some derivatives of 1-aminopyidium iodide are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C5) and B (C7-C12) are, of course, planar, and they are oriented at a dihedral angle of 73.40 (3)°.

In the crystal structure, π-π contacts between the pyridine and the benzene rings and the pyridine rings, Cg1—Cg2i and Cg1—Cg1ii [symmetry codes: (i) x, 3/2 - y, z - 1/2; (ii) 1 - x, 2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/C1-C5) and B (C7-C12) , respectively] may stabilize the structure, with centroid-centroid distances of 3.548 (3) Å and 4.211 (3) Å.

Related literature top

For background, see: Okamoto et al. (1967). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 1-aminopyridinium iodide (22.2 g, 0.10 mol) was dissolved in ethanol (20 ml), benzaldehyde(10.6 g, 0.10 mol) was added with stirring, and then the mixture was heated at reflux for 5 h. Upon cooling to room temperature, a precipitate formed, which was collected by filtration and washed with cold ethanol (2 X 10 ml) to obtain a yellow solid (yield; 21.7 g, 70%). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic and methine H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-(Benzylideneamino)pyridinum iodide top
Crystal data top
C12H11N2+·IF(000) = 600
Mr = 310.13Dx = 1.706 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.5722 (17) Åθ = 2.1–25.3°
b = 7.8219 (13) ŵ = 2.62 mm1
c = 15.386 (3) ÅT = 291 K
β = 108.354 (2)°Block, yellow
V = 1207.6 (4) Å30.13 × 0.12 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1713 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 97
Tmin = 0.727, Tmax = 0.780l = 1818
5768 measured reflections3 standard reflections every 120 min
2133 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
2133 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C12H11N2+·IV = 1207.6 (4) Å3
Mr = 310.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5722 (17) ŵ = 2.62 mm1
b = 7.8219 (13) ÅT = 291 K
c = 15.386 (3) Å0.13 × 0.12 × 0.10 mm
β = 108.354 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1713 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.067
Tmin = 0.727, Tmax = 0.7803 standard reflections every 120 min
5768 measured reflections intensity decay: none
2133 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 0.94Δρmax = 0.50 e Å3
2133 reflectionsΔρmin = 0.53 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.36542 (2)0.37261 (3)0.175113 (16)0.05509 (13)
N10.2501 (3)0.8944 (3)0.03899 (19)0.0462 (7)
N20.1744 (3)0.8956 (3)0.10105 (19)0.0482 (7)
C10.3602 (4)0.7989 (5)0.0544 (3)0.0543 (9)
H10.39420.73930.10910.065*
C20.4222 (4)0.7904 (5)0.0117 (3)0.0597 (10)
H20.49750.72250.00240.072*
C30.3734 (4)0.8812 (5)0.0909 (3)0.0586 (10)
H30.41620.87750.13530.070*
C40.2612 (4)0.9776 (6)0.1045 (2)0.0633 (10)
H40.22741.04020.15820.076*
C50.1982 (4)0.9821 (5)0.0388 (2)0.0617 (10)
H50.12051.04540.04840.074*
C60.2447 (3)0.9324 (4)0.1829 (2)0.0439 (8)
H60.33470.95790.19610.053*
C70.1831 (3)0.9341 (5)0.2553 (2)0.0447 (8)
C80.2456 (4)1.0226 (5)0.3354 (2)0.0584 (9)
H80.32501.08020.34190.070*
C90.0654 (4)0.8452 (5)0.2465 (3)0.0566 (10)
H90.02400.78380.19340.068*
C100.0110 (4)0.8488 (5)0.3166 (3)0.0687 (12)
H100.06780.79020.31090.082*
C110.0729 (5)0.9391 (6)0.3955 (3)0.0748 (13)
H110.03520.94190.44250.090*
C120.1899 (5)1.0252 (6)0.4051 (3)0.0716 (12)
H120.23151.08510.45880.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05786 (18)0.0622 (2)0.04976 (17)0.00118 (11)0.02344 (12)0.00535 (11)
N10.0537 (16)0.0507 (17)0.0363 (15)0.0039 (13)0.0172 (13)0.0040 (13)
N20.0509 (16)0.0610 (18)0.0355 (15)0.0047 (13)0.0176 (13)0.0016 (14)
C10.064 (2)0.050 (2)0.052 (2)0.0022 (18)0.0222 (18)0.0048 (18)
C20.066 (2)0.055 (2)0.067 (3)0.0024 (19)0.034 (2)0.005 (2)
C30.069 (2)0.066 (2)0.050 (2)0.012 (2)0.0314 (19)0.013 (2)
C40.067 (2)0.082 (3)0.0402 (19)0.001 (2)0.0172 (18)0.010 (2)
C50.061 (2)0.083 (3)0.043 (2)0.010 (2)0.0183 (17)0.004 (2)
C60.0466 (18)0.0441 (19)0.0398 (19)0.0008 (14)0.0118 (15)0.0004 (15)
C70.0471 (19)0.0505 (19)0.0351 (18)0.0047 (15)0.0107 (15)0.0027 (16)
C80.061 (2)0.070 (3)0.0405 (19)0.0007 (19)0.0111 (17)0.0024 (19)
C90.054 (2)0.068 (3)0.050 (2)0.0020 (17)0.0190 (18)0.0039 (18)
C100.067 (3)0.078 (3)0.074 (3)0.003 (2)0.040 (2)0.012 (2)
C110.097 (3)0.082 (3)0.062 (3)0.033 (3)0.049 (3)0.019 (3)
C120.098 (3)0.078 (3)0.039 (2)0.015 (3)0.022 (2)0.004 (2)
Geometric parameters (Å, º) top
N1—N21.426 (4)C6—C71.457 (4)
C1—N11.340 (4)C6—H60.9300
C1—C21.375 (5)C7—C81.385 (5)
C1—H10.9300C7—C91.394 (5)
C2—C31.364 (5)C8—C121.377 (5)
C2—H20.9300C8—H80.9300
C3—C41.365 (5)C9—C101.374 (6)
C3—H30.9300C9—H90.9300
C4—C51.374 (5)C10—C111.378 (7)
C4—H40.9300C10—H100.9300
C5—N11.339 (4)C11—C121.375 (6)
C5—H50.9300C11—H110.9300
C6—N21.277 (4)C12—H120.9300
C5—N1—C1122.2 (3)N2—C6—H6120.2
C5—N1—N2116.0 (3)C7—C6—H6120.2
C1—N1—N2121.6 (3)C8—C7—C9119.8 (3)
C6—N2—N1112.8 (3)C8—C7—C6118.8 (3)
N1—C1—C2119.1 (4)C9—C7—C6121.4 (3)
N1—C1—H1120.4C12—C8—C7120.0 (4)
C2—C1—H1120.4C12—C8—H8120.0
C3—C2—C1120.1 (4)C7—C8—H8120.0
C3—C2—H2119.9C10—C9—C7119.7 (4)
C1—C2—H2119.9C10—C9—H9120.1
C2—C3—C4119.3 (4)C7—C9—H9120.1
C2—C3—H3120.3C9—C10—C11120.1 (4)
C4—C3—H3120.3C9—C10—H10120.0
C3—C4—C5120.1 (4)C11—C10—H10120.0
C3—C4—H4119.9C12—C11—C10120.5 (4)
C5—C4—H4119.9C12—C11—H11119.7
N1—C5—C4119.2 (4)C10—C11—H11119.7
N1—C5—H5120.4C11—C12—C8119.9 (4)
C4—C5—H5120.4C11—C12—H12120.0
N2—C6—C7119.7 (3)C8—C12—H12120.0

Experimental details

Crystal data
Chemical formulaC12H11N2+·I
Mr310.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)10.5722 (17), 7.8219 (13), 15.386 (3)
β (°) 108.354 (2)
V3)1207.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.62
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.727, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
5768, 2133, 1713
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 0.94
No. of reflections2133
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.53

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOkamoto, T., Hirobe, M., Sato, R. (1967). Yakugaku Zasshi, 87, 994–996.  CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds