organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Iodo­benzene­sulfonamido)benzoic acid monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sagrodha, Pakistan, and cDepartment of Chemistry, University of Sargodha, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 22 December 2008; accepted 23 December 2008; online 8 January 2009)

In the mol­ecule of the title compound, C13H10INO4S·H2O, the coordination around the S atom is distorted tetra­hedral. The aromatic rings are oriented at a dihedral angle of 74.18 (17)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of non-planar five- and six-membered rings, which adopt envelope and twist conformations, respectively. In the crystal structure, inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules. ππ Contacts between the phenyl rings [centroid–centroid distance = 3.726 (3) Å] may further stabilize the structure. There is also a C—H⋯π inter­action.

Related literature

For general background, see: Medina et al. (1999[Medina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. & Jaen, J. C. (1999). Bioorg. Med. Chem. Lett. 9, 1843-1846.]). For related structures, see: Arshad et al. (2008a[Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008a). Acta Cryst. E64, o2380.],b[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, m1628.]); Nan & Xing (2006[Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978-o1979.]); Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10INO4S·H2O

  • Mr = 421.20

  • Monoclinic, P 21 /c

  • a = 13.8049 (9) Å

  • b = 8.2756 (5) Å

  • c = 14.7928 (10) Å

  • β = 117.472 (3)°

  • V = 1499.42 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 296 (2) K

  • 0.28 × 0.10 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 0.849

  • 9099 measured reflections

  • 3687 independent reflections

  • 2022 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.01

  • 3687 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.03 2.860 (6) 161.00
O3—H3O⋯O5ii 0.91 (7) 1.73 (7) 2.616 (6) 165 (7)
O5—H5A⋯O2iii 0.81 2.20 2.924 (6) 149.00
O5—H5B⋯O1 0.88 1.98 2.791 (6) 152.00
C6—H6⋯O1 0.93 2.36 2.793 (7) 108.00
C11—H11⋯O2iv 0.93 2.52 3.437 (6) 171.00
C12—H12⋯O1 0.93 2.54 3.035 (7) 114.00
C3—H3⋯Cg2v 0.93 2.90 3.818 (7) 168.00
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the C7–C12 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound belongs to the sulfonamide family of the organic compounds. This class of compounds is used as antibecterial agent. The halogenated sulfonamide is used as an inhibitor for the growth of multidrug resistant MCF-7/ADR cancer cells (Medina et al., 1999). In continuation to our researches with sulfonamides (Arshad et al., 2008a,b), the title compound has been prepared, which will be utilized for the syntheses of biologically active heterocyclic molecules with thiazine moiety, and we report herein its crystal structure.

In the title compound, (I), (Fig 1), 2-iodophenyl and p-aminobenzoic acid moieties are connected through the SO2 group. The structure of (I) differs from 4-(tosylamino)benzoic acid, (II) (Nan & Xing, 2006), mainly due to the attachment of the iodo group at ortho position instead of methyl group at the para-position. The coordination around the S atom is a distorted tetrahedral. Rings A(C1-C6) and B(C7-C12) are oriented at a dihedral angle of 74.18 (17)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formations of nonplanar five- and six-membered rings: C (S1/O1/C1/C6/H6) and D (S1/O1/N1/C7/C12/H12). Ring C adopts envelope conformation with O1 atom displaced by -0.172 (3) Å from the plane of the other rings atoms, while ring D has twisted conformation.

In the crystal structure, intermolecular N-H···O, O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contact between the phenyl rings, Cg1—Cg1i [symmetry code: (i) -x, -y, -z, where Cg1 is centroid of the ring A (C1-C6)] may further stabilize the structure, with centroid-centroid distance of 3.726 (3) Å. There also exists a C–H···π interaction (Table 1).

Related literature top

For general background, see: Medina et al. (1999). For related structures, see: Arshad et al. (2008a,b); Nan & Xing (2006); Deng & Mani (2006).

Experimental top

The title compound was synthesized according to a literature method (Deng & Mani, 2006). 4-Aminobenzoic acid (0.23 g, 1.67 mmol) was suspended in distilled water (10 ml) in a round bottom flask. The pH of the solution was adjusted to 8-9 using Na2CO3 (1 M). Then, 2-iodobenzene sulfonyl chloride (0.5 g, 1.66 mmol) was added, and stirred at room temperature. The reaction pH was maintained at 8-9. Completion of reaction was indicated by the dissolvation of the suspended 2-iodobenzene sulfonyl chloride. Then, pH was adjusted to 2-3 using HCl (2 N), the precipitate formed was filtered, washed with distilled water, and then recrystalyzed in methanol.

Refinement top

H3O (for OH) atom was located in difference syntheses and refined [O-H = 0.91 (7) Å, Uiso(H) = 1.2Ueq(O)]. The remaining H atoms were positioned geometrically, with O-H = 0.81 and 0.88 Å (for H2O), N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N,O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-(2-Iodobenzenesulfonamido)benzoic acid monohydrate top
Crystal data top
C13H10INO4S·H2OF(000) = 824
Mr = 421.20Dx = 1.866 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3638 reflections
a = 13.8049 (9) Åθ = 2.8–28.3°
b = 8.2756 (5) ŵ = 2.30 mm1
c = 14.7928 (10) ÅT = 296 K
β = 117.472 (3)°Needle, light brown
V = 1499.42 (17) Å30.28 × 0.10 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3687 independent reflections
Radiation source: fine-focus sealed tube2022 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.8°
ω scansh = 1518
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 116
Tmin = 0.754, Tmax = 0.849l = 1919
9099 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
3687 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.55 e Å3
1 restraintΔρmin = 0.54 e Å3
Crystal data top
C13H10INO4S·H2OV = 1499.42 (17) Å3
Mr = 421.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8049 (9) ŵ = 2.30 mm1
b = 8.2756 (5) ÅT = 296 K
c = 14.7928 (10) Å0.28 × 0.10 × 0.07 mm
β = 117.472 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3687 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2022 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 0.849Rint = 0.041
9099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
3687 reflectionsΔρmin = 0.54 e Å3
193 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.05915 (3)0.04749 (5)0.26394 (3)0.0542 (2)
S10.25343 (9)0.13703 (16)0.19929 (10)0.0345 (4)
O10.3085 (3)0.2410 (4)0.1612 (3)0.0454 (14)
O20.2710 (3)0.0328 (4)0.2010 (3)0.0415 (11)
O30.4294 (3)0.7980 (5)0.6032 (3)0.0614 (17)
O40.3555 (4)0.9284 (5)0.4580 (3)0.0710 (17)
O50.4923 (3)0.4220 (5)0.1937 (3)0.086 (2)
N10.2852 (3)0.1876 (5)0.3139 (3)0.0377 (16)
C10.1119 (4)0.1750 (5)0.1231 (4)0.0292 (17)
C20.0316 (4)0.1050 (6)0.1405 (4)0.0363 (19)
C30.0775 (4)0.1337 (7)0.0725 (5)0.051 (2)
C40.1052 (5)0.2319 (8)0.0099 (5)0.056 (2)
C50.0257 (5)0.2994 (7)0.0279 (4)0.054 (2)
C60.0834 (4)0.2707 (6)0.0389 (4)0.044 (2)
C70.3051 (3)0.3426 (6)0.3580 (4)0.0331 (18)
C80.3537 (4)0.3529 (6)0.4634 (4)0.0392 (19)
C90.3778 (4)0.5001 (6)0.5106 (4)0.0378 (17)
C100.3543 (3)0.6425 (6)0.4554 (4)0.0327 (16)
C110.3061 (4)0.6315 (6)0.3498 (4)0.0391 (19)
C120.2810 (4)0.4842 (6)0.3012 (4)0.0397 (17)
C130.3791 (4)0.8042 (7)0.5038 (5)0.0417 (19)
H10.290970.109160.354210.0453*
H30.132130.085380.083340.0614*
H3O0.440 (5)0.896 (8)0.634 (5)0.0734*
H40.178270.252710.053780.0676*
H50.044480.364460.084810.0649*
H60.137570.316700.026520.0534*
H80.369970.259030.502160.0469*
H90.410640.504650.581380.0457*
H110.290450.725580.311260.0474*
H120.247910.479360.230470.0474*
H5A0.552250.437140.241630.1030*
H5B0.448250.357540.205130.1030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0626 (3)0.0469 (3)0.0680 (3)0.0006 (2)0.0429 (2)0.0116 (2)
S10.0343 (6)0.0313 (8)0.0384 (9)0.0025 (6)0.0171 (6)0.0039 (6)
O10.049 (2)0.043 (2)0.056 (3)0.0132 (17)0.0343 (19)0.0061 (19)
O20.0403 (19)0.029 (2)0.050 (2)0.0031 (16)0.0165 (17)0.0062 (18)
O30.086 (3)0.032 (3)0.043 (3)0.003 (2)0.010 (2)0.007 (2)
O40.105 (3)0.027 (3)0.045 (3)0.005 (2)0.004 (2)0.005 (2)
O50.046 (2)0.076 (4)0.100 (4)0.015 (2)0.003 (2)0.054 (3)
N10.053 (3)0.023 (2)0.029 (3)0.0021 (19)0.012 (2)0.003 (2)
C10.035 (3)0.024 (3)0.028 (3)0.002 (2)0.014 (2)0.001 (2)
C20.039 (3)0.028 (3)0.044 (4)0.002 (2)0.021 (3)0.007 (2)
C30.043 (3)0.042 (4)0.070 (5)0.003 (3)0.027 (3)0.016 (3)
C40.046 (3)0.051 (4)0.049 (4)0.008 (3)0.002 (3)0.011 (3)
C50.073 (4)0.041 (4)0.032 (4)0.009 (3)0.010 (3)0.001 (3)
C60.054 (3)0.037 (4)0.040 (4)0.005 (3)0.020 (3)0.003 (3)
C70.030 (2)0.028 (3)0.038 (4)0.000 (2)0.013 (2)0.004 (3)
C80.052 (3)0.023 (3)0.041 (4)0.001 (2)0.020 (3)0.006 (3)
C90.050 (3)0.028 (3)0.033 (3)0.000 (2)0.017 (3)0.001 (2)
C100.028 (2)0.032 (3)0.035 (3)0.002 (2)0.012 (2)0.002 (3)
C110.044 (3)0.023 (3)0.046 (4)0.000 (2)0.017 (3)0.007 (3)
C120.050 (3)0.033 (3)0.027 (3)0.001 (2)0.010 (3)0.003 (2)
C130.036 (3)0.030 (3)0.048 (4)0.004 (2)0.010 (3)0.002 (3)
Geometric parameters (Å, º) top
I1—C22.105 (5)C5—C61.389 (9)
S1—O11.425 (4)C7—C81.387 (7)
S1—O21.425 (4)C7—C121.390 (7)
S1—N11.599 (4)C8—C91.367 (7)
S1—C11.776 (6)C9—C101.384 (7)
O3—C131.306 (8)C10—C131.481 (8)
O4—C131.191 (7)C10—C111.390 (7)
O3—H3O0.91 (7)C11—C121.376 (7)
O5—H5A0.8100C3—H30.9300
O5—H5B0.8800C4—H40.9300
N1—C71.408 (6)C5—H50.9300
N1—H10.8600C6—H60.9300
C1—C21.376 (8)C8—H80.9300
C1—C61.372 (7)C9—H90.9300
C2—C31.392 (9)C11—H110.9300
C3—C41.365 (9)C12—H120.9300
C4—C51.363 (10)
I1···O23.456 (5)C4···O2iv3.158 (8)
I1···N13.456 (4)C4···I1xi3.853 (7)
I1···C4i3.853 (7)C5···C5xii3.416 (8)
I1···C2i3.671 (5)C8···O1xiii3.353 (7)
I1···C3i3.509 (6)C9···C9x3.530 (9)
I1···H13.1200C12···O13.035 (7)
S1···H122.8800C13···O5v3.379 (7)
S1···H5Aii2.9200C9···H3xi3.1000
O1···O52.791 (6)C10···H3xi2.8900
O1···C123.035 (7)C11···H3xi3.0100
O1···C8iii3.353 (7)H1···I13.1200
O2···C4iv3.158 (8)H1···H82.3100
O2···O5ii2.924 (6)H1···O4ix2.0300
O2···I13.456 (5)H3···C10i2.8900
O3···O5v2.616 (6)H3···C9i3.1000
O4···N1vi2.860 (6)H3···C11i3.0100
O5···O3vii2.616 (6)H3O···O5v1.73 (7)
O5···C13vii3.379 (7)H3O···H5Av2.1400
O5···O2viii2.924 (6)H3O···H5Bv2.2700
O5···O12.791 (6)H4···O2iv2.6700
O1···H122.5400H5A···O2viii2.2000
O1···H5B1.9800H5A···H9x2.4700
O1···H62.3600H5A···S1viii2.9200
O1···H8iii2.8500H5A···H3Ovii2.1400
O2···H4iv2.6700H5B···O11.9800
O2···H11ix2.5200H5B···O3x2.8500
O2···H5Aii2.2000H5B···H3Ovii2.2700
O3···H92.4500H6···O12.3600
O3···H5Bx2.8500H8···O4ix2.8000
O4···H1vi2.0300H8···H12.3100
O4···H8vi2.8000H8···O1xiii2.8500
O4···H112.5600H9···O32.4500
O5···H3Ovii1.73 (7)H9···H5Ax2.4700
N1···O4ix2.860 (6)H11···O2vi2.5200
N1···I13.456 (4)H11···O42.5600
C2···I1xi3.671 (5)H12···O12.5400
C3···I1xi3.509 (6)H12···S12.8800
O1—S1—O2119.0 (3)C8—C9—C10121.5 (5)
O1—S1—N1109.0 (2)C9—C10—C11117.9 (5)
O1—S1—C1105.9 (2)C11—C10—C13119.1 (5)
O2—S1—N1106.2 (2)C9—C10—C13123.0 (5)
O2—S1—C1108.3 (2)C10—C11—C12121.3 (5)
N1—S1—C1108.1 (3)C7—C12—C11119.9 (5)
C13—O3—H3O114 (4)O3—C13—C10113.2 (5)
H5A—O5—H5B116.00O4—C13—C10124.3 (6)
S1—N1—C7129.0 (4)O3—C13—O4122.6 (6)
C7—N1—H1116.00C2—C3—H3120.00
S1—N1—H1115.00C4—C3—H3120.00
S1—C1—C2123.5 (4)C5—C4—H4120.00
S1—C1—C6116.7 (5)C3—C4—H4120.00
C2—C1—C6119.6 (5)C4—C5—H5120.00
I1—C2—C1125.2 (4)C6—C5—H5120.00
C1—C2—C3119.3 (5)C5—C6—H6120.00
I1—C2—C3115.6 (4)C1—C6—H6120.00
C2—C3—C4120.7 (6)C7—C8—H8120.00
C3—C4—C5120.0 (6)C9—C8—H8120.00
C4—C5—C6119.9 (5)C10—C9—H9119.00
C1—C6—C5120.5 (6)C8—C9—H9119.00
C8—C7—C12119.0 (5)C10—C11—H11119.00
N1—C7—C8117.8 (4)C12—C11—H11119.00
N1—C7—C12123.2 (5)C7—C12—H12120.00
C7—C8—C9120.4 (5)C11—C12—H12120.00
O1—S1—N1—C735.5 (5)C1—C2—C3—C40.9 (9)
O2—S1—N1—C7164.9 (5)C2—C3—C4—C51.9 (10)
C1—S1—N1—C779.1 (5)C3—C4—C5—C61.3 (9)
O1—S1—C1—C2175.7 (4)C4—C5—C6—C10.1 (8)
O1—S1—C1—C69.1 (4)N1—C7—C8—C9178.2 (5)
O2—S1—C1—C255.6 (5)C12—C7—C8—C90.2 (9)
O2—S1—C1—C6119.7 (4)N1—C7—C12—C11177.8 (5)
N1—S1—C1—C259.0 (5)C8—C7—C12—C110.4 (9)
N1—S1—C1—C6125.7 (4)C7—C8—C9—C100.3 (9)
S1—N1—C7—C8166.5 (4)C8—C9—C10—C110.6 (9)
S1—N1—C7—C1211.8 (8)C8—C9—C10—C13180.0 (6)
S1—C1—C2—I14.0 (6)C9—C10—C11—C120.9 (9)
S1—C1—C2—C3175.7 (4)C13—C10—C11—C12179.7 (6)
C6—C1—C2—I1179.1 (4)C9—C10—C13—O32.8 (8)
C6—C1—C2—C30.5 (8)C9—C10—C13—O4176.6 (6)
S1—C1—C6—C5176.5 (4)C11—C10—C13—O3176.6 (5)
C2—C1—C6—C51.0 (8)C11—C10—C13—O44.0 (9)
I1—C2—C3—C4179.4 (5)C10—C11—C12—C70.8 (9)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y, z; (v) x, y+3/2, z+1/2; (vi) x, y+1, z; (vii) x, y+3/2, z1/2; (viii) x+1, y+1/2, z+1/2; (ix) x, y1, z; (x) x+1, y+1, z+1; (xi) x, y+1/2, z+1/2; (xii) x, y+1, z; (xiii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4ix0.862.032.860 (6)161.00
O3—H3O···O5v0.91 (7)1.73 (7)2.616 (6)165 (7)
O5—H5A···O2viii0.812.202.924 (6)149.00
O5—H5B···O10.881.982.791 (6)152.00
C6—H6···O10.932.362.793 (7)108.00
C11—H11···O2vi0.932.523.437 (6)171.00
C12—H12···O10.932.543.035 (7)114.00
C3—H3···Cg2i0.932.903.818 (7)168.00
Symmetry codes: (i) x, y1/2, z+1/2; (v) x, y+3/2, z+1/2; (vi) x, y+1, z; (viii) x+1, y+1/2, z+1/2; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formulaC13H10INO4S·H2O
Mr421.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8049 (9), 8.2756 (5), 14.7928 (10)
β (°) 117.472 (3)
V3)1499.42 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.28 × 0.10 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.754, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
9099, 3687, 2022
Rint0.041
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.01
No. of reflections3687
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.032.860 (6)161.00
O3—H3O···O5ii0.91 (7)1.73 (7)2.616 (6)165 (7)
O5—H5A···O2iii0.812.202.924 (6)149.00
O5—H5B···O10.881.982.791 (6)152.00
C6—H6···O10.932.362.793 (7)108.00
C11—H11···O2iv0.932.523.437 (6)171.00
C12—H12···O10.932.543.035 (7)114.00
C3—H3···Cg2v0.932.903.818 (7)168.00
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z; (v) x, y1/2, z+1/2.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008a). Acta Cryst. E64, o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008b). Acta Cryst. E64, m1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMedina, J. C., Roche, D., Shan, B., Learned, R. M., Frankmoelle, W. P., Clark, D. L., Rosen, T. & Jaen, J. C. (1999). Bioorg. Med. Chem. Lett. 9, 1843–1846.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds