organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-(2-iodo­benzene­sulfonamido)­benzoic acid

aGovernment College University, Department of Chemistry, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sagrodha, Pakistan, and cUniversity of Sargodha, Department of Chemistry, Sagrodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 23 December 2008; accepted 24 December 2008; online 10 January 2009)

In the mol­ecule of the title compound, C13H9ClINO4S, the coordination around the S atom is distorted tetra­hedral. The aromatic rings are oriented at a dihedral angle of 74.46 (9)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two five- and one six-membered rings, which adopt planar, envelope and twisted conformations, respectively. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules to form R22(8) ring motifs, which are further linked by C—H⋯O hydrogen bonds. ππ contacts between the benzene rings [centroid–centroid distances = 3.709 (3) and 3.772 (3) Å] may further stabilize the structure. The I atom is disordered over two positions, refined with occupancies of ca 0.75 and 0.25.

Related literature

For related structures, see: Arshad, Tahir, Khan, Ahmad & Shafiq (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008). Acta Cryst. E64, o2380.]); Arshad, Tahir, Khan, Shafiq & Siddiqui (2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, m1628.]); Arshad et al. (2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]); Deng & Mani (2006[Deng, X. & Mani, N. S. (2006). Green Chem. 8, 835-838.]). For ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9ClINO4S

  • Mr = 437.62

  • Monoclinic, C 2/c

  • a = 26.6375 (9) Å

  • b = 8.5532 (2) Å

  • c = 14.2696 (5) Å

  • β = 111.923 (2)°

  • V = 3016.03 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.45 mm−1

  • T = 296 (2) K

  • 0.25 × 0.12 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.708, Tmax = 0.819

  • 16794 measured reflections

  • 3738 independent reflections

  • 2909 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.069

  • S = 1.05

  • 3738 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 2.07 2.903 (3) 164
O3—H3O⋯O2ii 0.76 (4) 1.95 (4) 2.714 (3) 176 (5)
C4—H4⋯O1iii 0.93 2.48 3.293 (4) 146
C6—H6⋯O1 0.93 2.36 2.792 (3) 108
C8—H8⋯O1 0.93 2.57 3.193 (3) 125
C8—H8⋯O3 0.93 2.28 2.631 (3) 102
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation to our researches with sulfonamides (Arshad, Tahir, Khan, Ahmad & Shafiq, 2008; Arshad, Tahir, Khan, Shafiq & Siddiqui, 2008; Arshad et al., 2009), the title compound has been synthesized, and we report herein its crystal structure.

The structure of the title compound, (I), (Fig 1), differs from 4-[(2-iodo- phenyl)sulfonyl]aminobenzoic acid hydrate, (II) (Arshad et al., 2009), due to the attachment of Cl atom and the change of the position of carboxylate group. Also in (I), there is no water molecule. The coordination around the S atom is a distorted tetrahedral. Rings A(C1-C6) and B(C7-C12) are oriented at a dihedral angle of 74.46 (9)°, which is nearly the same with the corresponding value [74.18 (17)°] in (II). The intramolecular C-H···O hydrogen bonds (Table 1) result in the formations of two five- and one six-membered rings: C (S1/O1/C1/C6/H6), D (O3/C8/C9/C13/H8) and E (S1/O1/N1/C7/C8/H8). Ring C is planar. Ring D adopts envelope conformation with O3 atom displaced by -0.260 (4) Å from the plane of the other rings atoms, while ring E has twisted conformation. The dihedral angle between rings A and C is 2.18 (3)°.

In the crystal structure, intermolecular N-H···O and O-H···O hydrogen bonds (Table 1) link the molecules to form R22(8) ring motifs (Bernstein et al., 1995), they are further linked by C-H···O hydrogen bonds (Table 1, Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the phenyl rings and the benzene rings, Cg1—Cg1i and Cg2—Cg2ii [symmetry codes: (i) 1/2 - x, 3/2 - y, 1 - z; (ii) -x, 2 - y, -z, where Cg1 and Cg2 are centroids of the rings A (C1-C6) and B(C7-C12), respectively] may further stabilize the structure, with centroid-centroid distances of 3.709 (3) Å and 3.772 (3) Å.

Related literature top

For related structures, see: Arshad, Tahir, Khan, Ahmad & Shafiq (2008); Arshad, Tahir, Khan, Shafiq & Siddiqui (2008); Arshad et al. (2009); Deng & Mani (2006). For ring motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized according to a literature method (Deng & Mani, 2006). 5-Amino-2-chlorobenzoic acid (0.28 g, 1.66 mmol) was suspended in distilled water (10 ml) in a round bottom flask. The pH of the solution was adjusted to 8-9 using Na2CO3 (1 M). Then, 2-iodobenzene sulfonyl chloride (0.5 g, 1.66 mmol) was added, and stirred at room temperature. The reaction pH was maintained at 8-9. Completion of reaction was indicated by the dissolvation of the suspended 2-iodobenzene sulfonyl chloride. Then, pH was adjusted to 2-3 using HCl (2 N). The precipitate formed was filtered, washed with distilled water, and then recrystalyzed in methanol.

Refinement top

The iodine atom was disordered over two positions. During the refinement process the disordered atoms I1A and I1B were refined with occupancies of 0.75 and 0.25, respectively. H3O (for OH) atom was located in difference syntheses and refined [O-H = 0.76 (4) Å, Uiso(H) = 1.2Ueq(O)]. The remaining H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
2-Chloro-5-(2-iodobenzenesulfonamido)benzoic acid top
Crystal data top
C13H9ClINO4SF(000) = 1696
Mr = 437.62Dx = 1.928 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3738 reflections
a = 26.6375 (9) Åθ = 2.5–28.3°
b = 8.5532 (2) ŵ = 2.45 mm1
c = 14.2696 (5) ÅT = 296 K
β = 111.923 (2)°Needle, light brown
V = 3016.03 (17) Å30.25 × 0.12 × 0.08 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3738 independent reflections
Radiation source: fine-focus sealed tube2909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω scansh = 3435
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1111
Tmin = 0.708, Tmax = 0.819l = 1818
16794 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0301P)2 + 3.5121P]
where P = (Fo2 + 2Fc2)/3
3738 reflections(Δ/σ)max = 0.002
203 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C13H9ClINO4SV = 3016.03 (17) Å3
Mr = 437.62Z = 8
Monoclinic, C2/cMo Kα radiation
a = 26.6375 (9) ŵ = 2.45 mm1
b = 8.5532 (2) ÅT = 296 K
c = 14.2696 (5) Å0.25 × 0.12 × 0.08 mm
β = 111.923 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3738 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2909 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.819Rint = 0.023
16794 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
3738 reflectionsΔρmin = 0.31 e Å3
203 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I1A0.12215 (4)0.55411 (16)0.41289 (12)0.0562 (2)0.750
I1B0.12364 (17)0.5371 (5)0.4021 (4)0.0789 (10)0.250
Cl10.04930 (3)1.21242 (9)0.10878 (7)0.0669 (3)
S10.16694 (2)0.68574 (6)0.21704 (5)0.0391 (2)
O10.18866 (8)0.7712 (2)0.15530 (16)0.0565 (7)
O20.18272 (7)0.52454 (19)0.23828 (15)0.0482 (6)
O30.13053 (10)1.2455 (2)0.1957 (2)0.0776 (9)
O40.05294 (9)1.3743 (2)0.13943 (18)0.0690 (8)
N10.10171 (8)0.6828 (2)0.16552 (17)0.0441 (7)
C10.18390 (9)0.7924 (3)0.33142 (18)0.0361 (7)
C20.16797 (10)0.7500 (3)0.4100 (2)0.0418 (8)
C30.18262 (12)0.8446 (4)0.4949 (2)0.0556 (10)
C40.21208 (13)0.9786 (4)0.5010 (3)0.0624 (11)
C50.22800 (12)1.0202 (3)0.4236 (3)0.0578 (10)
C60.21433 (10)0.9275 (3)0.3391 (2)0.0453 (8)
C70.06742 (10)0.8137 (2)0.15009 (18)0.0371 (7)
C80.08656 (10)0.9658 (2)0.15617 (19)0.0402 (7)
C90.05220 (10)1.0940 (3)0.14506 (18)0.0394 (7)
C100.00221 (11)1.0655 (3)0.12406 (19)0.0436 (8)
C110.02139 (11)0.9137 (3)0.1157 (2)0.0490 (8)
C120.01314 (10)0.7883 (3)0.1292 (2)0.0451 (8)
C130.07726 (12)1.2528 (3)0.1587 (2)0.0456 (8)
H10.086560.593520.145790.0529*
H30.172390.817000.548290.0667*
H3O0.1464 (16)1.322 (5)0.207 (3)0.0931*
H40.221301.041510.558110.0749*
H50.248001.111020.428210.0695*
H60.225450.955030.286810.0544*
H80.122890.982810.167840.0482*
H110.058020.896060.100690.0588*
H120.000120.686810.124270.0541*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I1A0.0535 (3)0.0462 (3)0.0796 (5)0.0084 (2)0.0373 (3)0.0109 (4)
I1B0.106 (2)0.0709 (18)0.0809 (13)0.0395 (13)0.0591 (12)0.0108 (9)
Cl10.0705 (5)0.0508 (4)0.0822 (5)0.0268 (3)0.0318 (4)0.0054 (4)
S10.0453 (3)0.0250 (3)0.0528 (4)0.0010 (2)0.0250 (3)0.0009 (2)
O10.0748 (13)0.0452 (10)0.0659 (13)0.0060 (9)0.0452 (11)0.0017 (9)
O20.0482 (10)0.0272 (8)0.0719 (13)0.0059 (7)0.0255 (9)0.0022 (8)
O30.0640 (15)0.0245 (9)0.140 (2)0.0043 (9)0.0331 (15)0.0062 (11)
O40.0735 (14)0.0240 (9)0.0982 (17)0.0068 (9)0.0190 (12)0.0050 (9)
N10.0451 (11)0.0202 (8)0.0602 (14)0.0000 (8)0.0119 (10)0.0022 (8)
C10.0333 (11)0.0271 (10)0.0489 (14)0.0007 (8)0.0166 (10)0.0000 (9)
C20.0379 (13)0.0389 (12)0.0531 (15)0.0018 (10)0.0221 (11)0.0042 (11)
C30.0577 (17)0.0623 (18)0.0538 (17)0.0023 (14)0.0290 (14)0.0012 (13)
C40.0660 (19)0.0542 (17)0.0633 (19)0.0021 (14)0.0198 (16)0.0204 (14)
C50.0598 (18)0.0364 (14)0.073 (2)0.0110 (12)0.0200 (16)0.0077 (13)
C60.0444 (14)0.0344 (12)0.0583 (16)0.0061 (10)0.0205 (12)0.0012 (11)
C70.0459 (13)0.0241 (10)0.0378 (12)0.0028 (9)0.0115 (10)0.0001 (9)
C80.0458 (13)0.0255 (10)0.0476 (14)0.0015 (9)0.0155 (11)0.0015 (9)
C90.0551 (15)0.0246 (10)0.0376 (13)0.0035 (9)0.0163 (11)0.0014 (9)
C100.0545 (15)0.0362 (12)0.0398 (13)0.0129 (10)0.0172 (11)0.0012 (10)
C110.0456 (14)0.0440 (14)0.0541 (16)0.0017 (11)0.0147 (12)0.0001 (12)
C120.0465 (14)0.0310 (11)0.0539 (15)0.0024 (10)0.0143 (12)0.0006 (10)
C130.0632 (17)0.0253 (11)0.0490 (15)0.0040 (10)0.0218 (13)0.0007 (10)
Geometric parameters (Å, º) top
I1A—C22.082 (3)C4—C51.370 (5)
I1B—C22.150 (5)C5—C61.374 (4)
Cl1—C101.731 (3)C7—C121.380 (4)
S1—O11.423 (2)C7—C81.388 (3)
S1—O21.4403 (17)C8—C91.399 (3)
S1—N11.614 (2)C9—C101.388 (4)
S1—C11.775 (3)C9—C131.494 (4)
O3—C131.318 (4)C10—C111.384 (4)
O4—C131.201 (3)C11—C121.379 (4)
O3—H3O0.76 (4)C3—H30.9300
N1—C71.409 (3)C4—H40.9300
N1—H10.8600C5—H50.9300
C1—C61.392 (4)C6—H60.9300
C1—C21.387 (4)C8—H80.9300
C2—C31.386 (4)C11—H110.9300
C3—C41.373 (5)C12—H120.9300
I1A···O23.446 (2)C1···C83.215 (3)
I1A···N13.540 (3)C2···C4ii3.552 (5)
I1A···Cl1i3.4575 (16)C4···C2ii3.552 (5)
I1A···C5ii3.851 (4)C4···O1x3.293 (4)
I1B···O23.271 (6)C5···I1Aii3.851 (4)
I1B···N13.438 (6)C5···I1Bii3.835 (6)
I1B···C5ii3.835 (6)C6···C83.445 (4)
I1B···Cl1i3.381 (5)C6···O2xi3.419 (3)
I1A···H12iii3.2900C7···Cl1v3.549 (3)
I1A···H11iii3.3600C8···O13.193 (3)
Cl1···O42.939 (3)C8···C63.445 (4)
Cl1···I1Aiv3.4575 (16)C8···C13.215 (3)
Cl1···I1Biv3.381 (5)C9···C11v3.499 (4)
Cl1···C7v3.549 (3)C10···C10iii3.552 (4)
S1···H3Ovi3.15 (4)C11···C11iii3.568 (4)
S1···H82.7800C11···C9v3.499 (4)
O1···C83.193 (3)C1···H82.8100
O1···C4vii3.293 (4)C6···H82.7700
O2···O3vi2.714 (3)C13···H1ix2.9400
O2···I1B3.271 (6)H1···O4vi2.0700
O2···I1A3.446 (2)H1···C13vi2.9400
O2···C6viii3.419 (3)H1···H122.3500
O3···O2ix2.714 (3)H3···O3x2.7800
O4···N1ix2.903 (3)H3O···S1ix3.15 (4)
O4···Cl12.939 (3)H3O···O2ix1.95 (4)
O1···H82.5700H4···O1x2.4800
O1···H4vii2.4800H5···O1xi2.7600
O1···H62.3600H6···O12.3600
O1···H5viii2.7600H6···O2xi2.6700
O2···H6viii2.6700H8···S12.7800
O2···H3Ovi1.95 (4)H8···O12.5700
O3···H3vii2.7800H8···O32.2800
O3···H82.2800H8···C12.8100
O4···H1ix2.0700H8···C62.7700
N1···I1A3.540 (3)H11···I1Aiii3.3600
N1···I1B3.438 (6)H12···H12.3500
N1···O4vi2.903 (3)H12···I1Aiii3.2900
O1—S1—O2117.89 (12)C8—C9—C10118.2 (2)
O1—S1—N1110.08 (12)C8—C9—C13117.2 (2)
O1—S1—C1106.41 (12)C10—C9—C13124.6 (2)
O2—S1—N1105.12 (11)Cl1—C10—C9123.3 (2)
O2—S1—C1110.15 (12)Cl1—C10—C11116.3 (2)
N1—S1—C1106.73 (12)C9—C10—C11120.4 (3)
C13—O3—H3O118 (3)C10—C11—C12120.8 (3)
S1—N1—C7125.69 (16)C7—C12—C11119.9 (2)
C7—N1—H1117.00O3—C13—O4122.7 (3)
S1—N1—H1117.00O3—C13—C9111.8 (2)
S1—C1—C6116.10 (19)O4—C13—C9125.5 (3)
S1—C1—C2124.0 (2)C2—C3—H3120.00
C2—C1—C6119.9 (2)C4—C3—H3120.00
I1A—C2—C1125.8 (2)C3—C4—H4120.00
I1A—C2—C3115.4 (2)C5—C4—H4120.00
C1—C2—C3118.9 (3)C4—C5—H5120.00
I1B—C2—C1120.5 (2)C6—C5—H5120.00
I1B—C2—C3120.7 (3)C1—C6—H6120.00
C2—C3—C4120.7 (3)C5—C6—H6120.00
C3—C4—C5120.5 (3)C7—C8—H8119.00
C4—C5—C6119.8 (3)C9—C8—H8119.00
C1—C6—C5120.3 (3)C10—C11—H11120.00
C8—C7—C12119.5 (2)C12—C11—H11120.00
N1—C7—C8122.2 (2)C7—C12—H12120.00
N1—C7—C12118.31 (19)C11—C12—H12120.00
C7—C8—C9121.2 (3)
O1—S1—N1—C765.6 (2)C3—C4—C5—C60.1 (5)
O2—S1—N1—C7166.5 (2)C4—C5—C6—C10.7 (5)
C1—S1—N1—C749.5 (2)N1—C7—C8—C9177.1 (2)
O1—S1—C1—C2177.4 (2)C12—C7—C8—C92.3 (4)
O1—S1—C1—C61.6 (2)N1—C7—C12—C11178.7 (2)
O2—S1—C1—C253.8 (3)C8—C7—C12—C110.7 (4)
O2—S1—C1—C6127.3 (2)C7—C8—C9—C102.3 (4)
N1—S1—C1—C259.8 (3)C7—C8—C9—C13176.6 (2)
N1—S1—C1—C6119.1 (2)C8—C9—C10—Cl1179.79 (19)
S1—N1—C7—C815.6 (4)C8—C9—C10—C110.8 (4)
S1—N1—C7—C12163.8 (2)C13—C9—C10—Cl11.0 (4)
S1—C1—C2—I1A0.7 (4)C13—C9—C10—C11178.1 (2)
S1—C1—C2—C3178.5 (2)C8—C9—C13—O310.3 (3)
C6—C1—C2—I1A179.6 (2)C8—C9—C13—O4170.0 (3)
C6—C1—C2—C30.4 (4)C10—C9—C13—O3168.5 (3)
S1—C1—C6—C5178.0 (2)C10—C9—C13—O411.2 (4)
C2—C1—C6—C50.9 (4)Cl1—C10—C11—C12178.3 (2)
I1A—C2—C3—C4178.9 (3)C9—C10—C11—C120.8 (4)
C1—C2—C3—C40.4 (5)C10—C11—C12—C70.8 (4)
C2—C3—C4—C50.7 (5)
Symmetry codes: (i) x, y1, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x, y, z+1/2; (iv) x, y+1, z+1/2; (v) x, y+2, z; (vi) x, y1, z; (vii) x, y+2, z1/2; (viii) x+1/2, y1/2, z+1/2; (ix) x, y+1, z; (x) x, y+2, z+1/2; (xi) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4vi0.862.072.903 (3)164
O3—H3O···O2ix0.76 (4)1.95 (4)2.714 (3)176 (5)
C4—H4···O1x0.932.483.293 (4)146
C6—H6···O10.932.362.792 (3)108
C8—H8···O10.932.573.193 (3)125
C8—H8···O30.932.282.631 (3)102
Symmetry codes: (vi) x, y1, z; (ix) x, y+1, z; (x) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9ClINO4S
Mr437.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)26.6375 (9), 8.5532 (2), 14.2696 (5)
β (°) 111.923 (2)
V3)3016.03 (17)
Z8
Radiation typeMo Kα
µ (mm1)2.45
Crystal size (mm)0.25 × 0.12 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.708, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
16794, 3738, 2909
Rint0.023
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.069, 1.05
No. of reflections3738
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.862.072.903 (3)164
O3—H3O···O2ii0.76 (4)1.95 (4)2.714 (3)176 (5)
C4—H4···O1iii0.932.483.293 (4)146
C6—H6···O10.932.362.792 (3)108
C8—H8···O10.932.573.193 (3)125
C8—H8···O30.932.282.631 (3)102
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+2, z+1/2.
 

Acknowledgements

MNA gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN 042-120607-PS2-183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Ahmad, E. & Shafiq, M. (2008). Acta Cryst. E64, o2380.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, m1628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, X. & Mani, N. S. (2006). Green Chem. 8, 835–838.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds