metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m203-m204

Bis[(E)-1-(3,4-di­chloro­benzyl­­idene­amino)-4-methyl­pyridinium] bis­­(maleo­nitrile­di­thiol­ato)nickelate(II)

aDepartment of Applied Chemistry, College of Sciences, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaobq123@126.com

(Received 2 January 2009; accepted 10 January 2009; online 17 January 2009)

The asymmetric unit of the title compound, (C13H11Cl2N2)2[Ni(C4N2S2)2], contains one-half of a centrosymmetric [Ni(mnt)2] anion (where mnt is maleonitrile­dithiol­ate or 1,2-dicyano-1,2-ethyl­enedithiol­ate) and an (E)-1-(3,4-dichloro­benzyl­ideneamino)-4-methyl­pyridinium cation. In the anion, the coordination around the Ni atom is a distorted square. In the cation, the aromatic rings are oriented at a dihedral angle of 7.81 (3)°. In the crystal structure, inter­molecular C—H⋯N hydrogen bonds link the cations and anions. ππ Contacts between the nickel dithiol­ene and pyridine rings and between the benzene and pyridine rings, [centroid–centroid distances = 3.682 (3) and 3.643 (3) Å, respectively] may further stabilize the structure.

Related literature

For general background, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Cassoux et al. (1991[Cassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115-160.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H11Cl2N2)2[Ni(C4N2S2)2]

  • Mr = 871.37

  • Monoclinic, P 21 /n

  • a = 10.7054 (10) Å

  • b = 13.8664 (13) Å

  • c = 12.5043 (12) Å

  • β = 95.803 (1)°

  • V = 1846.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.729, Tmax = 0.895

  • 15877 measured reflections

  • 4273 independent reflections

  • 3611 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.089

  • S = 1.08

  • 4273 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—S1 2.1622 (5)
Ni1—S2 2.1838 (5)
S1—Ni1—S2i 88.128 (19)
S1—Ni1—S2 91.872 (19)
Symmetry code: (i) -x+1, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N2ii 0.93 2.51 3.413 (3) 163
Symmetry code: (ii) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Square-planar M[dithiolene]2 complexes have attracted extensive interests in the areas of conducting and magnetic materials, dyes, non-linear optics and catalysis (Robertson et al., 2002; Cassoux et al., 1991). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of centrosymmetric [Ni(mnt)2] (where mnt is maleonitriledithiolate) anion and a (E)-1-(3,4-di-chlorobenzylideneamino)-4-methylpyridinium cation. In the anion, the coordination around the Ni atom is a distorted square (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (Ni1/S1/S2/C2/C3), B (N3/C5-C9) and C (C12-C17) are, of course, planar and they are oriented at dihedral angles of A/B = 16.69 (3)°, A/C = 13.47 (3)° and B/C = 7.81 (3)°.

In the crystal structure, intermolecular C-H···N hydrogen bonds (Table 2) link the cations and anions (Fig. 2), in which they may be effective in the stabilization of the structure. The π-π contacts between the nickel dithiolene and the pyridine rings and the benzene and the pyridine rings, Cg1—Cg3i and Cg3—Cg4ii [symmetry codes: (i) 1/2 + x, 1/2 - y, 1/2 + z; (ii) 1 - x, 1 - y, -z, where Cg1, Cg3 and Cg4 are centroids of the rings A (Ni1/S1/S2/C2/C3), B (N3/C5-C9) and C (C12-C17), respectively] may further stabilize the structure, with centroid-centroid distances of 3.682 (3) Å and 3.643 (3) Å.

Related literature top

For general background, see: Robertson et al. (2002); Cassoux et al. (1991). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, disodium maleonitriledithiolate (458 mg, 2.46 mmol) and nickel chloride hexahydrate (230 mg, 0.96 mmol) were mixed by stirring in EtOH (20 ml) at room temperature. Subsequently, a solution of (E)-1-(3,4-di-chlorobenzylideneamino)-4-methylpyridinium iodide (2143 mg, 2.46 mmol) in EtOH (10 ml) was added to the mixture, and the red precipitate immediately formed was filtered off, and washed with EtOH. The crude product was recrystallized in acetone (20 ml) to give black crystals. Crystals suitable for X-ray analysis were obtained by diffusing diethyl ether into the solution of the title compound in acetone for 8 d. FT-IR data (KBr pellets, cm-1): 2189 (s), 2920 (s),1631(s), 1485 (s), 1272 (s).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code (A): 1 - x, -y, 1 - z].
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Bis[(E)-1-(3,4-dichlorobenzylideneamino)-4-methylpyridinium] bis(1,2-dicyano-1,2-ethylenedithiolato)nickelate(II) top
Crystal data top
(C13H11Cl2N2)2[Ni(C4N2S2)2]F(000) = 884
Mr = 871.37Dx = 1.567 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3049 reflections
a = 10.7054 (10) Åθ = 2.1–22.4°
b = 13.8664 (13) ŵ = 1.08 mm1
c = 12.5043 (12) ÅT = 296 K
β = 95.803 (1)°Block, black
V = 1846.7 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
4273 independent reflections
Radiation source: fine-focus sealed tube3611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.729, Tmax = 0.895k = 1818
15877 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.044P)2 + 0.5603P]
where P = (Fo2 + 2Fc2)/3
4273 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
(C13H11Cl2N2)2[Ni(C4N2S2)2]V = 1846.7 (3) Å3
Mr = 871.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 10.7054 (10) ŵ = 1.08 mm1
b = 13.8664 (13) ÅT = 296 K
c = 12.5043 (12) Å0.30 × 0.20 × 0.10 mm
β = 95.803 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3611 reflections with I > 2σ(I)
Tmin = 0.729, Tmax = 0.895Rint = 0.023
15877 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.08Δρmax = 0.44 e Å3
4273 reflectionsΔρmin = 0.37 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.50000.03598 (10)
Cl10.39412 (8)0.83968 (4)0.09607 (5)0.0739 (2)
Cl20.39194 (7)0.91419 (4)0.14262 (5)0.07117 (18)
S10.48602 (6)0.12888 (4)0.40218 (4)0.05280 (15)
S20.48684 (5)0.08311 (3)0.64679 (4)0.04583 (13)
N10.4615 (3)0.38988 (15)0.41030 (19)0.0831 (7)
N20.4392 (2)0.33492 (14)0.73857 (16)0.0663 (5)
N30.32151 (14)0.36297 (10)0.05354 (12)0.0393 (3)
N40.34563 (15)0.46221 (11)0.03826 (13)0.0449 (4)
C10.4621 (2)0.31630 (15)0.45077 (17)0.0549 (5)
C20.46864 (18)0.22060 (13)0.49411 (16)0.0446 (4)
C30.46740 (17)0.20093 (13)0.60048 (15)0.0407 (4)
C40.45178 (19)0.27570 (14)0.67685 (16)0.0477 (4)
C50.3192 (2)0.29411 (15)0.02278 (18)0.0543 (5)
H5A0.33430.31010.09250.065*
C60.2946 (2)0.20068 (15)0.0028 (2)0.0584 (5)
H6A0.29190.15370.05050.070*
C70.27374 (19)0.17458 (14)0.10617 (19)0.0517 (5)
C80.2804 (2)0.24667 (15)0.18250 (18)0.0543 (5)
H8A0.26820.23160.25320.065*
C90.3045 (2)0.34025 (14)0.15582 (16)0.0487 (4)
H9A0.30920.38800.20830.058*
C100.2459 (3)0.07236 (16)0.1355 (3)0.0768 (8)
H10A0.24490.03230.07280.115*
H10B0.16560.06950.16310.115*
H10C0.30960.04990.18930.115*
C110.32672 (19)0.49507 (13)0.05590 (17)0.0471 (4)
H11A0.30020.45440.11290.056*
C120.34690 (17)0.59789 (13)0.07481 (16)0.0428 (4)
C130.35970 (18)0.66292 (14)0.00916 (16)0.0457 (4)
H13A0.35850.64120.07940.055*
C140.37433 (18)0.76020 (14)0.01073 (16)0.0461 (4)
C150.37612 (18)0.79287 (14)0.11577 (17)0.0473 (4)
C160.3660 (2)0.72771 (16)0.19945 (17)0.0573 (5)
H16A0.36920.74930.26950.069*
C170.3511 (2)0.63062 (16)0.18005 (17)0.0553 (5)
H17A0.34400.58710.23690.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.04103 (18)0.02949 (16)0.03748 (18)0.00120 (12)0.00426 (12)0.00094 (12)
Cl10.1235 (6)0.0405 (3)0.0601 (3)0.0083 (3)0.0212 (3)0.0033 (2)
Cl20.0980 (5)0.0409 (3)0.0771 (4)0.0025 (3)0.0212 (3)0.0183 (3)
S10.0855 (4)0.0343 (2)0.0391 (3)0.0037 (2)0.0086 (2)0.00337 (18)
S20.0636 (3)0.0350 (2)0.0393 (2)0.0017 (2)0.0074 (2)0.00029 (18)
N10.129 (2)0.0424 (11)0.0774 (15)0.0156 (12)0.0078 (14)0.0102 (10)
N20.0909 (15)0.0513 (11)0.0586 (11)0.0040 (10)0.0163 (10)0.0105 (9)
N30.0427 (8)0.0299 (7)0.0456 (8)0.0002 (6)0.0058 (6)0.0016 (6)
N40.0546 (9)0.0300 (7)0.0506 (9)0.0035 (6)0.0072 (7)0.0025 (6)
C10.0731 (14)0.0395 (10)0.0513 (12)0.0092 (9)0.0023 (10)0.0002 (9)
C20.0484 (10)0.0343 (9)0.0507 (11)0.0029 (7)0.0038 (8)0.0006 (8)
C30.0410 (9)0.0337 (8)0.0474 (10)0.0007 (7)0.0037 (7)0.0032 (7)
C40.0551 (11)0.0401 (10)0.0486 (11)0.0005 (8)0.0083 (9)0.0012 (8)
C50.0720 (14)0.0424 (10)0.0497 (11)0.0014 (9)0.0127 (10)0.0057 (9)
C60.0685 (14)0.0383 (10)0.0690 (14)0.0025 (9)0.0088 (11)0.0111 (10)
C70.0439 (10)0.0328 (9)0.0779 (15)0.0005 (7)0.0040 (10)0.0047 (9)
C80.0662 (13)0.0413 (10)0.0564 (12)0.0021 (9)0.0112 (10)0.0100 (9)
C90.0619 (12)0.0366 (9)0.0478 (11)0.0017 (8)0.0063 (9)0.0018 (8)
C100.0816 (17)0.0339 (11)0.115 (2)0.0054 (10)0.0105 (16)0.0099 (12)
C110.0536 (11)0.0383 (10)0.0484 (11)0.0039 (8)0.0008 (8)0.0031 (8)
C120.0422 (9)0.0382 (9)0.0475 (10)0.0019 (7)0.0020 (8)0.0079 (8)
C130.0533 (11)0.0405 (10)0.0443 (10)0.0052 (8)0.0106 (8)0.0083 (8)
C140.0498 (11)0.0395 (9)0.0500 (11)0.0041 (8)0.0104 (8)0.0021 (8)
C150.0481 (10)0.0377 (9)0.0567 (11)0.0013 (8)0.0075 (9)0.0123 (8)
C160.0741 (14)0.0539 (12)0.0439 (11)0.0081 (10)0.0063 (10)0.0151 (9)
C170.0728 (14)0.0482 (11)0.0441 (11)0.0076 (10)0.0020 (10)0.0040 (9)
Geometric parameters (Å, º) top
Ni1—S12.1622 (5)C6—H6A0.9300
Ni1—S1i2.1622 (5)C7—C81.379 (3)
Ni1—S2i2.1838 (5)C7—C101.501 (3)
Ni1—S22.1838 (5)C8—C91.371 (3)
Cl1—C141.728 (2)C8—H8A0.9300
Cl2—C151.7272 (19)C9—H9A0.9300
S1—C21.737 (2)C10—H10A0.9600
S2—C31.7388 (19)C10—H10B0.9600
N1—C11.139 (3)C10—H10C0.9600
N2—C41.144 (3)C11—C121.465 (2)
N3—C91.347 (3)C11—H11A0.9300
N3—C51.349 (2)C12—C131.380 (3)
N3—N41.417 (2)C12—C171.397 (3)
N4—C111.260 (3)C13—C141.383 (3)
C1—C21.432 (3)C13—H13A0.9300
C2—C31.359 (3)C14—C151.391 (3)
C3—C41.431 (3)C15—C161.378 (3)
C5—C61.366 (3)C16—C171.380 (3)
C5—H5A0.9300C16—H16A0.9300
C6—C71.383 (3)C17—H17A0.9300
S1—Ni1—S1i180.0C7—C8—H8A119.5
S1—Ni1—S2i88.128 (19)N3—C9—C8119.95 (19)
S1i—Ni1—S2i91.873 (19)N3—C9—H9A120.0
S1—Ni1—S291.872 (19)C8—C9—H9A120.0
S1i—Ni1—S288.128 (19)C7—C10—H10A109.5
S2i—Ni1—S2180.0C7—C10—H10B109.5
C2—S1—Ni1103.69 (7)H10A—C10—H10B109.5
C3—S2—Ni1103.39 (6)C7—C10—H10C109.5
C9—N3—C5120.77 (17)H10A—C10—H10C109.5
C9—N3—N4113.53 (15)H10B—C10—H10C109.5
C5—N3—N4125.66 (16)N4—C11—C12119.38 (18)
C11—N4—N3117.59 (16)N4—C11—H11A120.3
N1—C1—C2175.0 (3)C12—C11—H11A120.3
C3—C2—C1123.45 (18)C13—C12—C17119.61 (18)
C3—C2—S1120.87 (14)C13—C12—C11121.19 (18)
C1—C2—S1115.62 (15)C17—C12—C11119.19 (19)
C2—C3—C4121.41 (17)C12—C13—C14120.30 (18)
C2—C3—S2120.11 (14)C12—C13—H13A119.8
C4—C3—S2118.47 (14)C14—C13—H13A119.8
N2—C4—C3179.4 (2)C13—C14—C15119.98 (19)
N3—C5—C6119.8 (2)C13—C14—Cl1119.36 (16)
N3—C5—H5A120.1C15—C14—Cl1120.64 (15)
C6—C5—H5A120.1C16—C15—C14119.72 (18)
C5—C6—C7121.3 (2)C16—C15—Cl2119.51 (16)
C5—C6—H6A119.3C14—C15—Cl2120.77 (16)
C7—C6—H6A119.3C15—C16—C17120.50 (19)
C8—C7—C6117.12 (18)C15—C16—H16A119.8
C8—C7—C10120.9 (2)C17—C16—H16A119.8
C6—C7—C10122.0 (2)C16—C17—C12119.9 (2)
C9—C8—C7121.0 (2)C16—C17—H17A120.1
C9—C8—H8A119.5C12—C17—H17A120.1
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2ii0.932.513.413 (3)163
Symmetry code: (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula(C13H11Cl2N2)2[Ni(C4N2S2)2]
Mr871.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.7054 (10), 13.8664 (13), 12.5043 (12)
β (°) 95.803 (1)
V3)1846.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.729, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
15877, 4273, 3611
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.08
No. of reflections4273
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.37

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—S12.1622 (5)Ni1—S22.1838 (5)
S1—Ni1—S2i88.128 (19)S1—Ni1—S291.872 (19)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N2ii0.932.513.413 (3)163
Symmetry code: (ii) x, y, z1.
 

Acknowledgements

The authors thank the Science and Technology Department of Jiangsu Province and the Natural Science Foundation of China for financial support (grant No. 10774076).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCassoux, P., Valade, L., Kobayashi, H., Kobayashi, A., Clark, R. A. & Underhill, A. E. (1991). Coord. Chem. Rev. 110, 115–160.  CrossRef CAS Web of Science Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m203-m204
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds