organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-3-(4-hydr­­oxy-6-oxo-1,6-di­hydro­pyrimidin-5-yl)-3-p-tolyl­propanamide

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: laotu2001@263.net

(Received 4 January 2009; accepted 11 January 2009; online 14 January 2009)

In the mol­ecule of the title compound, C20H25N3O3, the aromatic rings are oriented at a dihedral angle of 88.36 (3)°. The cyclo­hexane ring adopts a chair conformation. In the crystal structure, inter­molecular N—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules. C—H⋯π inter­actions are also present.

Related literature

For general background, see: Johar et al. (2005[Johar, M., Manning, T., Kunimoto, D. Y. & Kumar, R. (2005). Bioorg. Med. Chem. 13, 6663-6671.]); Janeba et al. (2005[Janeba, Z., Balzarini, J., Andrei, G., Snoeck, R., De Clercq, E. & Robins, M. J. (2005). J. Med. Chem. 48, 4690-4696.]); Soloducho et al. (2003[Soloducho, J., Doskocz, J., Cabaj, J. & Roszak, S. (2003). Tetrahedron, 59, 4761-4766.]); Mathews & Asokan (2007[Mathews, A. & Asokan, C. V. (2007). Tetrahedron, 63, 7845-7849.]); Lagoja (2005[Lagoja, I. M. (2005). Chem. Biodivers. 2, 1-50.]); Michael (2005[Michael, J. P. (2005). Nat. Prod. Rep. 22, 627 646.]); Erian (1993[Erian, A. W. (1993). Chem. Rev. 93, 1991-2005.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H25N3O3

  • Mr = 355.43

  • Monoclinic, P 21 /n

  • a = 7.1563 (12) Å

  • b = 19.637 (2) Å

  • c = 13.2746 (18) Å

  • β = 101.740 (2)°

  • V = 1826.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.23 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 9491 measured reflections

  • 3216 independent reflections

  • 1916 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.104

  • S = 1.02

  • 3216 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 1.98 2.813 (3) 162
O1—H1A⋯N2ii 0.82 1.95 2.753 (3) 168
N3—H3⋯O2iii 0.86 2.19 2.992 (4) 155
C17—H17BCg2iv 0.97 2.47 3.440 (3) 177
C20—H20ACg2v 0.97 2.74 3.629 (3) 152
Symmetry codes: (i) x+1, y, z; (ii) -x+2, -y+2, -z+2; (iii) -x+2, -y+2, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y, -z+1. Cg2 is centroid of the C8–C13 ring.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The pyrimidines and their derivatives as a class of extremely important heterocyclic compounds are used in a wide array of synthetic and industrial applications. Not only they are an integral part of the genetic materials, viz. DNA and RNA as nucleotides and nucleosides but also play critical roles especially in pharmaceutical fields (Johar et al., 2005; Janeba et al., 2005). Some pyrimidine derivatives can give stable and good quality nanomaterials having many important electrical and optical properties (Soloducho et al., 2003; Mathews & Asokan, 2007), and also used as functional materials (Lagoja, 2005; Michael, 2005; Erian, 1993). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C1-C4) and B (C8-C13) are, of course, planar, and they are oriented at a dihedral angle of 88.36 (3)°. The cyclohexane ring C (C15-C20), having total puckering amplitude, QT, of 0.565 (3) Å, chair conformation [ϕ = -30.33 (3)° and θ = 4.00 (3)°] (Cremer & Pople, 1975).

In the crystal structure, intermolecular N-H···O and O-H···N hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. There also exist C–H···π interactions (Table 1).

Related literature top

For general background, see: Johar et al. (2005); Janeba et al. (2005); Soloducho et al. (2003); Mathews & Asokan (2007); Lagoja (2005); Michael (2005); Erian (1993). For bond-length data, see: Allen et al. (1987). For ring-puckering parameters, see: Cremer & Pople (1975). Cg2 is centroid of the C8–C13 ring.

Experimental top

The title compound was prepared by the reaction of p-tolylidene-Meldrum's acid (1 mmol) with 6-hydroxypyrimidin-4(3H)-one (1 mmol) and cyclohexanamine (1 mmol) at 373 K in glacial acetic acid under microwave irradiation (maximum power 250 W, initial power 100 W) for 18 min (yield; 83%, m.p. 534–536 K). Crystals suitable for X-ray analysis were obtained from an ethanol solution by slow evaporation.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH), N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for methyl and OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-Cyclohexyl-3-(4-hydroxy-6-oxo-1,6-dihydropyrimidin-5-yl)- 3-p-tolylpropanamide top
Crystal data top
C20H25N3O3F(000) = 760
Mr = 355.43Dx = 1.293 Mg m3
Monoclinic, P21/nMelting point = 534–536 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.1563 (12) ÅCell parameters from 1921 reflections
b = 19.637 (2) Åθ = 2.6–27.7°
c = 13.2746 (18) ŵ = 0.09 mm1
β = 101.740 (2)°T = 298 K
V = 1826.5 (4) Å3Block, colorless
Z = 40.23 × 0.16 × 0.14 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3216 independent reflections
Radiation source: fine-focus sealed tube1916 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 88
Tmin = 0.980, Tmax = 0.988k = 2321
9491 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0354P)2]
where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H25N3O3V = 1826.5 (4) Å3
Mr = 355.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1563 (12) ŵ = 0.09 mm1
b = 19.637 (2) ÅT = 298 K
c = 13.2746 (18) Å0.23 × 0.16 × 0.14 mm
β = 101.740 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1916 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.073
9491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.02Δρmax = 0.16 e Å3
3216 reflectionsΔρmin = 0.19 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8327 (2)1.04303 (8)0.89288 (11)0.0456 (5)
H1A0.85981.02970.95260.068*
O21.1335 (2)1.04358 (9)0.60752 (11)0.0511 (5)
O30.5892 (2)0.93937 (8)0.69802 (11)0.0447 (4)
N11.2782 (3)1.00038 (10)0.76292 (14)0.0387 (5)
H11.37860.99090.73940.046*
N21.1340 (3)0.99789 (9)0.90587 (13)0.0367 (5)
N30.7956 (3)0.91122 (9)0.59665 (13)0.0378 (5)
H30.85140.92510.54880.045*
C11.2753 (3)0.98462 (12)0.86043 (17)0.0396 (6)
H1B1.38150.96260.89870.048*
C20.9778 (3)1.02944 (11)0.84599 (16)0.0316 (5)
C30.9650 (3)1.04690 (10)0.74467 (15)0.0290 (5)
C41.1234 (3)1.03189 (11)0.69730 (17)0.0346 (6)
C50.6857 (3)0.95565 (11)0.63376 (16)0.0329 (6)
C60.6872 (3)1.02749 (11)0.59477 (16)0.0350 (6)
H6A0.55721.04220.56790.042*
H6B0.75631.02910.53910.042*
C70.7820 (3)1.07626 (11)0.68124 (15)0.0317 (6)
H70.69311.07950.72830.038*
C80.8005 (3)1.14835 (11)0.64204 (16)0.0302 (5)
C90.6815 (3)1.17248 (12)0.55327 (17)0.0366 (6)
H90.60221.14210.51080.044*
C100.6781 (3)1.24068 (12)0.52658 (18)0.0400 (6)
H100.59521.25530.46720.048*
C110.7955 (4)1.28759 (12)0.58638 (19)0.0393 (6)
C120.9218 (4)1.26311 (12)0.67173 (19)0.0412 (6)
H121.00681.29310.71150.049*
C130.9251 (3)1.19530 (12)0.69940 (17)0.0367 (6)
H131.01181.18060.75730.044*
C140.7807 (4)1.36269 (12)0.5595 (2)0.0587 (8)
H14A0.86431.37310.51350.088*
H14B0.81681.38920.62120.088*
H14C0.65171.37340.52690.088*
C150.8280 (3)0.84081 (11)0.63122 (17)0.0367 (6)
H150.72000.82660.66140.044*
C161.0092 (4)0.83383 (13)0.71338 (18)0.0488 (7)
H16A0.99990.86270.77140.059*
H16B1.11740.84920.68570.059*
C171.0429 (4)0.76056 (13)0.75025 (19)0.0532 (7)
H17A1.16490.75760.79790.064*
H17B0.94420.74730.78680.064*
C181.0418 (4)0.71171 (14)0.6614 (2)0.0593 (8)
H18A1.15380.71980.63240.071*
H18B1.04830.66530.68690.071*
C190.8642 (4)0.72005 (12)0.5780 (2)0.0556 (8)
H19A0.75360.70570.60430.067*
H19B0.87380.69100.52020.067*
C200.8367 (4)0.79365 (12)0.54125 (18)0.0435 (6)
H20A0.94180.80700.50950.052*
H20B0.71950.79750.49000.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0413 (10)0.0669 (13)0.0301 (9)0.0186 (9)0.0109 (8)0.0084 (8)
O20.0557 (12)0.0680 (13)0.0339 (10)0.0139 (10)0.0193 (9)0.0113 (8)
O30.0467 (11)0.0426 (10)0.0503 (10)0.0067 (8)0.0227 (9)0.0080 (8)
N10.0312 (12)0.0497 (13)0.0373 (11)0.0088 (10)0.0120 (10)0.0044 (10)
N20.0357 (12)0.0444 (13)0.0295 (11)0.0122 (10)0.0057 (9)0.0041 (9)
N30.0432 (13)0.0354 (12)0.0390 (11)0.0032 (10)0.0185 (10)0.0063 (9)
C10.0356 (15)0.0456 (15)0.0353 (14)0.0085 (12)0.0020 (12)0.0041 (11)
C20.0292 (13)0.0365 (14)0.0286 (13)0.0043 (11)0.0047 (11)0.0004 (10)
C30.0301 (13)0.0301 (13)0.0257 (12)0.0031 (11)0.0030 (10)0.0007 (10)
C40.0371 (15)0.0360 (14)0.0304 (13)0.0042 (12)0.0061 (12)0.0026 (11)
C50.0296 (14)0.0373 (15)0.0302 (13)0.0008 (11)0.0024 (11)0.0011 (11)
C60.0363 (15)0.0344 (14)0.0319 (13)0.0028 (11)0.0016 (11)0.0038 (10)
C70.0340 (14)0.0347 (14)0.0263 (12)0.0042 (11)0.0059 (11)0.0018 (10)
C80.0277 (13)0.0324 (14)0.0305 (13)0.0052 (11)0.0063 (11)0.0021 (11)
C90.0315 (14)0.0359 (15)0.0403 (14)0.0024 (11)0.0020 (12)0.0036 (11)
C100.0372 (15)0.0397 (15)0.0420 (15)0.0012 (13)0.0053 (12)0.0081 (12)
C110.0348 (15)0.0356 (15)0.0493 (16)0.0008 (12)0.0130 (13)0.0031 (12)
C120.0328 (15)0.0378 (15)0.0537 (17)0.0081 (12)0.0104 (13)0.0084 (12)
C130.0292 (14)0.0418 (15)0.0376 (14)0.0014 (12)0.0034 (12)0.0012 (11)
C140.066 (2)0.0381 (17)0.0760 (19)0.0006 (14)0.0241 (16)0.0061 (14)
C150.0355 (15)0.0356 (15)0.0413 (14)0.0049 (11)0.0132 (12)0.0074 (11)
C160.0460 (17)0.0539 (17)0.0462 (16)0.0012 (14)0.0090 (14)0.0077 (13)
C170.0423 (17)0.0642 (19)0.0551 (17)0.0101 (14)0.0148 (14)0.0224 (15)
C180.0567 (19)0.0523 (19)0.075 (2)0.0196 (15)0.0281 (17)0.0207 (15)
C190.059 (2)0.0414 (17)0.071 (2)0.0062 (14)0.0233 (17)0.0026 (14)
C200.0406 (16)0.0427 (16)0.0477 (15)0.0063 (13)0.0099 (13)0.0021 (12)
Geometric parameters (Å, º) top
N1—C11.335 (3)C10—H100.9300
N1—C41.406 (3)C11—C121.384 (3)
N1—H10.8600C11—C141.516 (3)
N2—C11.305 (3)C12—C131.380 (3)
N2—C21.380 (3)C12—H120.9300
N3—C51.334 (3)C13—H130.9300
N3—C151.460 (3)C14—H14A0.9600
N3—H30.8600C14—H14B0.9600
O1—C21.341 (2)C14—H14C0.9600
O1—H1A0.8200C15—C161.522 (3)
O2—C41.230 (2)C15—C201.523 (3)
O3—C51.244 (2)C15—H150.9800
C1—H1B0.9300C16—C171.523 (3)
C2—C31.373 (3)C16—H16A0.9700
C3—C41.435 (3)C16—H16B0.9700
C3—C71.519 (3)C17—C181.519 (4)
C5—C61.504 (3)C17—H17A0.9700
C6—C71.542 (3)C17—H17B0.9700
C6—H6A0.9700C18—C191.515 (4)
C6—H6B0.9700C18—H18A0.9700
C7—C81.523 (3)C18—H18B0.9700
C7—H70.9800C19—C201.525 (3)
C8—C91.390 (3)C19—H19A0.9700
C8—C131.396 (3)C19—H19B0.9700
C9—C101.384 (3)C20—H20A0.9700
C9—H90.9300C20—H20B0.9700
C10—C111.383 (3)
C1—N1—C4122.5 (2)C13—C12—H12119.1
C1—N1—H1118.8C11—C12—H12119.1
C4—N1—H1118.8C12—C13—C8121.2 (2)
C1—N2—C2115.89 (18)C12—C13—H13119.4
C5—N3—C15124.82 (18)C8—C13—H13119.4
C5—N3—H3117.6C11—C14—H14A109.5
C15—N3—H3117.6C11—C14—H14B109.5
C2—O1—H1A109.5H14A—C14—H14B109.5
N2—C1—N1124.6 (2)C11—C14—H14C109.5
N2—C1—H1B117.7H14A—C14—H14C109.5
N1—C1—H1B117.7H14B—C14—H14C109.5
O1—C2—C3120.1 (2)N3—C15—C16111.59 (19)
O1—C2—N2115.78 (18)N3—C15—C20111.02 (18)
C3—C2—N2124.1 (2)C16—C15—C20110.01 (19)
C2—C3—C4118.5 (2)N3—C15—H15108.0
C2—C3—C7121.06 (19)C16—C15—H15108.0
C4—C3—C7120.26 (18)C20—C15—H15108.0
O2—C4—N1119.2 (2)C15—C16—C17111.8 (2)
O2—C4—C3126.4 (2)C15—C16—H16A109.3
N1—C4—C3114.34 (18)C17—C16—H16A109.3
O3—C5—N3122.4 (2)C15—C16—H16B109.3
O3—C5—C6121.4 (2)C17—C16—H16B109.3
N3—C5—C6116.14 (19)H16A—C16—H16B107.9
C5—C6—C7111.05 (17)C18—C17—C16111.8 (2)
C5—C6—H6A109.4C18—C17—H17A109.3
C7—C6—H6A109.4C16—C17—H17A109.3
C5—C6—H6B109.4C18—C17—H17B109.3
C7—C6—H6B109.4C16—C17—H17B109.3
H6A—C6—H6B108.0H17A—C17—H17B107.9
C3—C7—C8114.65 (18)C19—C18—C17111.7 (2)
C3—C7—C6112.09 (17)C19—C18—H18A109.3
C8—C7—C6112.24 (17)C17—C18—H18A109.3
C3—C7—H7105.7C19—C18—H18B109.3
C8—C7—H7105.7C17—C18—H18B109.3
C6—C7—H7105.7H18A—C18—H18B107.9
C9—C8—C13116.8 (2)C18—C19—C20111.7 (2)
C9—C8—C7121.7 (2)C18—C19—H19A109.3
C13—C8—C7121.2 (2)C20—C19—H19A109.3
C10—C9—C8121.5 (2)C18—C19—H19B109.3
C10—C9—H9119.2C20—C19—H19B109.3
C8—C9—H9119.2H19A—C19—H19B107.9
C11—C10—C9121.4 (2)C15—C20—C19110.4 (2)
C11—C10—H10119.3C15—C20—H20A109.6
C9—C10—H10119.3C19—C20—H20A109.6
C10—C11—C12117.3 (2)C15—C20—H20B109.6
C10—C11—C14120.5 (2)C19—C20—H20B109.6
C12—C11—C14122.2 (2)H20A—C20—H20B108.1
C13—C12—C11121.7 (2)
C2—N2—C1—N11.1 (3)C3—C7—C8—C9153.35 (19)
C4—N1—C1—N21.8 (4)C6—C7—C8—C924.0 (3)
C1—N2—C2—O1180.0 (2)C3—C7—C8—C1333.2 (3)
C1—N2—C2—C30.1 (3)C6—C7—C8—C13162.62 (19)
O1—C2—C3—C4179.7 (2)C13—C8—C9—C104.0 (3)
N2—C2—C3—C40.3 (3)C7—C8—C9—C10169.7 (2)
O1—C2—C3—C75.2 (3)C8—C9—C10—C111.0 (3)
N2—C2—C3—C7174.9 (2)C9—C10—C11—C122.5 (3)
C1—N1—C4—O2178.3 (2)C9—C10—C11—C14176.1 (2)
C1—N1—C4—C31.3 (3)C10—C11—C12—C133.1 (3)
C2—C3—C4—O2179.2 (2)C14—C11—C12—C13175.5 (2)
C7—C3—C4—O24.0 (4)C11—C12—C13—C80.1 (3)
C2—C3—C4—N10.3 (3)C9—C8—C13—C123.4 (3)
C7—C3—C4—N1175.56 (18)C7—C8—C13—C12170.3 (2)
C15—N3—C5—O34.8 (3)C5—N3—C15—C1694.9 (3)
C15—N3—C5—C6174.2 (2)C5—N3—C15—C20142.0 (2)
O3—C5—C6—C766.6 (3)N3—C15—C16—C17179.60 (18)
N3—C5—C6—C7112.4 (2)C20—C15—C16—C1756.7 (3)
C2—C3—C7—C8117.4 (2)C15—C16—C17—C1854.0 (3)
C4—C3—C7—C867.5 (3)C16—C17—C18—C1952.2 (3)
C2—C3—C7—C6113.1 (2)C17—C18—C19—C2054.0 (3)
C4—C3—C7—C662.0 (3)N3—C15—C20—C19178.2 (2)
C5—C6—C7—C344.5 (2)C16—C15—C20—C1957.8 (3)
C5—C6—C7—C8175.24 (18)C18—C19—C20—C1557.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.982.813 (3)162
O1—H1A···N2ii0.821.952.753 (3)168
N3—H3···O2iii0.862.192.992 (4)155
C17—H17B···Cg2iv0.972.473.440 (3)177
C20—H20A···Cg2v0.972.743.629 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+2; (iii) x+2, y+2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H25N3O3
Mr355.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1563 (12), 19.637 (2), 13.2746 (18)
β (°) 101.740 (2)
V3)1826.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
9491, 3216, 1916
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 1.02
No. of reflections3216
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.861.982.813 (3)162
O1—H1A···N2ii0.821.952.753 (3)168
N3—H3···O2iii0.862.192.992 (4)155
C17—H17B···Cg2iv0.972.473.440 (3)177
C20—H20A···Cg2v0.972.743.629 (3)152
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+2, z+2; (iii) x+2, y+2, z+1; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20672090) and Natural Science Foundation of Jiangsu Province (grant No. BK2006033).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationErian, A. W. (1993). Chem. Rev. 93, 1991–2005.  CrossRef CAS Web of Science Google Scholar
First citationJaneba, Z., Balzarini, J., Andrei, G., Snoeck, R., De Clercq, E. & Robins, M. J. (2005). J. Med. Chem. 48, 4690–4696.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohar, M., Manning, T., Kunimoto, D. Y. & Kumar, R. (2005). Bioorg. Med. Chem. 13, 6663–6671.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLagoja, I. M. (2005). Chem. Biodivers. 2, 1–50.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMathews, A. & Asokan, C. V. (2007). Tetrahedron, 63, 7845-7849.  Web of Science CrossRef CAS Google Scholar
First citationMichael, J. P. (2005). Nat. Prod. Rep. 22, 627 646.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoloducho, J., Doskocz, J., Cabaj, J. & Roszak, S. (2003). Tetrahedron, 59, 4761–4766.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds