organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Meth­oxy­benz­yl)-4-(2-meth­oxy­phen­yl)-4H-1,2,4-triazol-3-ol

aDepartment of Chemistry, Quaid-I-Azam Univeristy, Islamabad 45320, Pakistan, and bThe Manchester Materials Science Centre and Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: qadeerqau@yahoo.com

(Received 11 January 2009; accepted 12 January 2009; online 17 January 2009)

In the mol­ecule of the title compound, C17H17N3O3, the triazole ring is oriented at dihedral angles of 88.09 (3) and 83.72 (3)° with respect to the 2-methoxy­benzyl and 2-methoxy­phenyl rings, respectively. The dihedral angle between the 2-methoxy­benzyl and 2-methoxy­phenyl rings is 52.95 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is a ππ contact between the 2-methoxy­phenyl rings [centroid–centroid distance = 3.811 (3) Å].

Related literature

For general background, see: Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574-578.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253-257.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339-1341.]); Paulvannan et al. (2000[Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218-223.]). For related structures, see: Öztürk et al. (2004a[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.],b[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O3

  • Mr = 311.34

  • Monoclinic, P 21 /c

  • a = 7.4941 (12) Å

  • b = 8.3730 (13) Å

  • c = 24.770 (4) Å

  • β = 97.455 (2)°

  • V = 1541.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.50 × 0.40 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11912 measured reflections

  • 3160 independent reflections

  • 2888 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.091

  • S = 1.06

  • 3160 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1i 0.890 (17) 1.911 (18) 2.7958 (14) 172.6 (15)
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral (Kritsanida et al., 2002) activities. The biological activity is closely related to the structure, possibly being due to the presence of the —N—C—S unit (Omar et al., 1986). We are interested in the syntheses and biological activities of the aryloxyacetyl hydrazide derivatives and report herein the synthesis and crystal structure of the title compound.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and they are comparable with those observed in related structures (Öztürk et al., 2004a,b). In the triazole ring, the N2=C1 [1.2960 (16) Å] bond has double bond character. Rings A (N1/N2/N3/C1/C2), B (C4-C9) and C (C11-C16) are, of course, planar and the dihedral angles between them are A/B = 88.09 (3)°, A/C = 83.72 (3)° and B/C = 52.95 (3)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the 2-methoxyphenyl rings, Cg1···Cg1i [symmetry code: (i) -x, 2 - y, -z, where Cg1 is the centroid of the ring C (C11-C16)] may further stabilize the structure, with centroid-centroid distance of 3.811 (3) Å.

Related literature top

For general background, see: Demirbas et al. (2002); Holla et al. (1998); Kritsanida et al. (2002); Omar et al. (1986); Paulvannan et al. (2000); Turan-Zitouni et al. (1999). For related structures, see: Öztürk et al. (2004a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis of the title compound was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(2-(2-methoxyphenyl)acetyl)semicarbazide (3.29 g, 10 mmol) in NaOH (2M) for 5 h. Crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield; 79%; m.p. 444–445 K).

Refinement top

H3N atom (for NH) was located in difference synthesis and refined isotropically [N-H = 0.890 (17) Å and Uiso(H) = 0.029 (4) Å2]. The remaining H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Reaction scheme.
5-(2-Methoxybenzyl)-4-(2-methoxyphenyl)-4H-1,2,4-triazol-3-ol top
Crystal data top
C17H17N3O3F(000) = 656
Mr = 311.34Dx = 1.342 Mg m3
Monoclinic, P21/cMelting point: 444(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4941 (12) ÅCell parameters from 912 reflections
b = 8.3730 (13) Åθ = 2.7–26.4°
c = 24.770 (4) ŵ = 0.09 mm1
β = 97.455 (2)°T = 100 K
V = 1541.2 (4) Å3Block, colorless
Z = 40.50 × 0.40 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2888 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 26.4°, θmin = 2.6°
ϕ and ω scansh = 99
11912 measured reflectionsk = 1010
3160 independent reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.586P]
where P = (Fo2 + 2Fc2)/3
3160 reflections(Δ/σ)max = 0.001
214 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H17N3O3V = 1541.2 (4) Å3
Mr = 311.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4941 (12) ŵ = 0.09 mm1
b = 8.3730 (13) ÅT = 100 K
c = 24.770 (4) Å0.50 × 0.40 × 0.30 mm
β = 97.455 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2888 reflections with I > 2σ(I)
11912 measured reflectionsRint = 0.039
3160 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
3160 reflectionsΔρmin = 0.17 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29433 (12)0.86489 (10)0.48842 (3)0.0211 (2)
O20.00410 (12)1.09258 (11)0.66422 (4)0.0245 (2)
O30.28378 (12)0.51980 (10)0.59145 (4)0.0232 (2)
N10.22479 (14)0.83390 (12)0.57791 (4)0.0170 (2)
N20.43854 (14)0.98640 (12)0.62165 (4)0.0191 (2)
N30.44636 (14)0.98655 (12)0.56595 (4)0.0186 (2)
H3N0.533 (2)1.0380 (19)0.5514 (7)0.029 (4)*
C10.30443 (16)0.89290 (14)0.62733 (5)0.0171 (2)
C20.32018 (16)0.89290 (14)0.53796 (5)0.0171 (3)
C30.24258 (17)0.84679 (15)0.68016 (5)0.0198 (3)
H3A0.31940.75870.69660.024*
H3B0.11770.80610.67290.024*
C40.24810 (16)0.98237 (14)0.72050 (5)0.0186 (3)
C50.12083 (16)1.10515 (15)0.71152 (5)0.0200 (3)
C60.11769 (18)1.22880 (16)0.74885 (5)0.0244 (3)
H60.03281.31310.74210.029*
C70.23959 (19)1.22812 (17)0.79612 (5)0.0265 (3)
H70.23701.31180.82190.032*
C80.36460 (18)1.10676 (17)0.80600 (5)0.0253 (3)
H80.44671.10610.83860.030*
C90.36928 (17)0.98536 (16)0.76775 (5)0.0221 (3)
H90.45700.90330.77420.027*
C100.15902 (18)1.18333 (18)0.66085 (6)0.0296 (3)
H10A0.22361.15570.69150.044*
H10B0.23481.15880.62660.044*
H10C0.13031.29760.66220.044*
C110.07604 (16)0.72543 (14)0.56880 (5)0.0170 (3)
C120.10903 (16)0.56170 (14)0.57578 (5)0.0185 (3)
C130.03451 (18)0.45580 (15)0.56618 (5)0.0218 (3)
H130.01460.34410.57020.026*
C140.20681 (18)0.51395 (16)0.55077 (5)0.0245 (3)
H140.30450.44120.54420.029*
C150.23904 (17)0.67620 (17)0.54470 (6)0.0253 (3)
H150.35800.71450.53450.030*
C160.09601 (17)0.78260 (16)0.55360 (5)0.0217 (3)
H160.11640.89410.54920.026*
C170.3195 (2)0.35431 (15)0.60309 (6)0.0278 (3)
H17A0.25300.32000.63260.042*
H17B0.44880.33920.61420.042*
H17C0.28130.29060.57040.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (5)0.0198 (4)0.0175 (4)0.0037 (4)0.0046 (4)0.0005 (3)
O20.0214 (5)0.0280 (5)0.0231 (5)0.0027 (4)0.0005 (4)0.0034 (4)
O30.0224 (5)0.0155 (4)0.0309 (5)0.0022 (3)0.0004 (4)0.0022 (4)
N10.0198 (5)0.0142 (5)0.0177 (5)0.0001 (4)0.0048 (4)0.0000 (4)
N20.0221 (5)0.0177 (5)0.0179 (5)0.0004 (4)0.0045 (4)0.0004 (4)
N30.0218 (5)0.0170 (5)0.0180 (5)0.0029 (4)0.0066 (4)0.0000 (4)
C10.0195 (6)0.0131 (6)0.0189 (6)0.0021 (4)0.0034 (5)0.0008 (4)
C20.0189 (6)0.0127 (6)0.0202 (6)0.0021 (4)0.0047 (5)0.0008 (4)
C30.0236 (6)0.0175 (6)0.0190 (6)0.0016 (5)0.0062 (5)0.0001 (5)
C40.0206 (6)0.0187 (6)0.0176 (6)0.0042 (5)0.0070 (5)0.0000 (5)
C50.0187 (6)0.0232 (6)0.0186 (6)0.0027 (5)0.0048 (5)0.0004 (5)
C60.0234 (6)0.0236 (7)0.0274 (7)0.0016 (5)0.0076 (5)0.0034 (5)
C70.0304 (7)0.0265 (7)0.0238 (7)0.0056 (6)0.0079 (6)0.0088 (5)
C80.0260 (7)0.0298 (7)0.0198 (6)0.0076 (5)0.0018 (5)0.0014 (5)
C90.0209 (6)0.0237 (7)0.0221 (6)0.0013 (5)0.0045 (5)0.0024 (5)
C100.0217 (7)0.0337 (8)0.0326 (8)0.0036 (6)0.0007 (6)0.0025 (6)
C110.0201 (6)0.0164 (6)0.0153 (6)0.0029 (5)0.0050 (5)0.0011 (4)
C120.0215 (6)0.0183 (6)0.0160 (6)0.0009 (5)0.0036 (5)0.0002 (5)
C130.0280 (7)0.0168 (6)0.0214 (6)0.0029 (5)0.0059 (5)0.0014 (5)
C140.0234 (6)0.0262 (7)0.0246 (7)0.0080 (5)0.0062 (5)0.0047 (5)
C150.0190 (6)0.0302 (7)0.0267 (7)0.0021 (5)0.0028 (5)0.0031 (5)
C160.0252 (7)0.0192 (6)0.0211 (6)0.0030 (5)0.0043 (5)0.0009 (5)
C170.0322 (7)0.0172 (7)0.0328 (7)0.0055 (5)0.0003 (6)0.0029 (5)
Geometric parameters (Å, º) top
O1—C21.2397 (15)C7—C81.382 (2)
O2—C51.3724 (15)C7—H70.9500
O2—C101.4326 (16)C8—C91.3931 (19)
O3—C121.3627 (15)C8—H80.9500
O3—C171.4335 (15)C9—H90.9500
N1—C11.3817 (16)C10—H10A0.9800
N1—C21.3848 (15)C10—H10B0.9800
N1—C111.4329 (15)C10—H10C0.9800
N2—C11.2960 (16)C11—C161.3811 (18)
N2—N31.3884 (15)C11—C121.3998 (17)
N3—C21.3489 (16)C12—C131.3905 (18)
N3—H3N0.890 (17)C13—C141.3865 (19)
C1—C31.4947 (17)C13—H130.9500
C3—C41.5093 (17)C14—C151.385 (2)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900C15—C161.3892 (19)
C4—C91.3854 (18)C15—H150.9500
C4—C51.4004 (18)C16—H160.9500
C5—C61.3903 (18)C17—H17A0.9800
C6—C71.3887 (19)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C5—O2—C10116.97 (10)C9—C8—H8120.3
C12—O3—C17116.99 (10)C4—C9—C8121.08 (12)
C1—N1—C2107.57 (10)C4—C9—H9119.5
C1—N1—C11127.15 (10)C8—C9—H9119.5
C2—N1—C11125.22 (10)O2—C10—H10A109.5
C1—N2—N3103.99 (10)O2—C10—H10B109.5
C2—N3—N2113.14 (10)H10A—C10—H10B109.5
C2—N3—H3N124.8 (10)O2—C10—H10C109.5
N2—N3—H3N121.9 (10)H10A—C10—H10C109.5
N2—C1—N1111.82 (11)H10B—C10—H10C109.5
N2—C1—C3125.74 (11)C16—C11—C12121.12 (11)
N1—C1—C3122.41 (11)C16—C11—N1120.19 (11)
O1—C2—N3128.89 (11)C12—C11—N1118.68 (11)
O1—C2—N1127.66 (11)O3—C12—C13125.32 (11)
N3—C2—N1103.45 (10)O3—C12—C11115.79 (11)
C1—C3—C4113.60 (10)C13—C12—C11118.89 (11)
C1—C3—H3A108.8C14—C13—C12119.69 (12)
C4—C3—H3A108.8C14—C13—H13120.2
C1—C3—H3B108.8C12—C13—H13120.2
C4—C3—H3B108.8C15—C14—C13121.17 (12)
H3A—C3—H3B107.7C15—C14—H14119.4
C9—C4—C5118.63 (12)C13—C14—H14119.4
C9—C4—C3122.11 (11)C14—C15—C16119.46 (12)
C5—C4—C3119.17 (11)C14—C15—H15120.3
O2—C5—C6124.12 (12)C16—C15—H15120.3
O2—C5—C4115.15 (11)C11—C16—C15119.65 (12)
C6—C5—C4120.73 (12)C11—C16—H16120.2
C7—C6—C5119.45 (12)C15—C16—H16120.2
C7—C6—H6120.3O3—C17—H17A109.5
C5—C6—H6120.3O3—C17—H17B109.5
C8—C7—C6120.59 (12)H17A—C17—H17B109.5
C8—C7—H7119.7O3—C17—H17C109.5
C6—C7—H7119.7H17A—C17—H17C109.5
C7—C8—C9119.49 (12)H17B—C17—H17C109.5
C7—C8—H8120.3
C1—N2—N3—C20.75 (13)C4—C5—C6—C71.53 (19)
N3—N2—C1—N10.47 (13)C5—C6—C7—C80.7 (2)
N3—N2—C1—C3177.59 (11)C6—C7—C8—C90.8 (2)
C2—N1—C1—N21.47 (13)C5—C4—C9—C80.56 (19)
C11—N1—C1—N2178.77 (11)C3—C4—C9—C8176.01 (12)
C2—N1—C1—C3176.66 (11)C7—C8—C9—C41.4 (2)
C11—N1—C1—C30.64 (18)C1—N1—C11—C1697.89 (15)
N2—N3—C2—O1178.27 (12)C2—N1—C11—C1685.26 (15)
N2—N3—C2—N11.60 (13)C1—N1—C11—C1281.92 (15)
C1—N1—C2—O1178.09 (12)C2—N1—C11—C1294.93 (14)
C11—N1—C2—O10.72 (19)C17—O3—C12—C135.25 (18)
C1—N1—C2—N31.78 (12)C17—O3—C12—C11175.20 (11)
C11—N1—C2—N3179.14 (11)C16—C11—C12—O3179.25 (11)
N2—C1—C3—C439.80 (17)N1—C11—C12—O30.56 (16)
N1—C1—C3—C4142.34 (11)C16—C11—C12—C131.16 (18)
C1—C3—C4—C9111.02 (13)N1—C11—C12—C13179.03 (11)
C1—C3—C4—C572.42 (15)O3—C12—C13—C14179.51 (11)
C10—O2—C5—C618.72 (18)C11—C12—C13—C140.95 (18)
C10—O2—C5—C4161.34 (11)C12—C13—C14—C150.01 (19)
C9—C4—C5—O2179.15 (11)C13—C14—C15—C160.8 (2)
C3—C4—C5—O22.47 (16)C12—C11—C16—C150.41 (19)
C9—C4—C5—C60.92 (18)N1—C11—C16—C15179.78 (11)
C3—C4—C5—C6177.59 (11)C14—C15—C16—C110.54 (19)
O2—C5—C6—C7178.54 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.890 (17)1.911 (18)2.7958 (14)172.6 (15)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H17N3O3
Mr311.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4941 (12), 8.3730 (13), 24.770 (4)
β (°) 97.455 (2)
V3)1541.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11912, 3160, 2888
Rint0.039
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.091, 1.06
No. of reflections3160
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O1i0.890 (17)1.911 (18)2.7958 (14)172.6 (15)
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574–578.  CrossRef PubMed CAS Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds